Chap. 10. UNIX System V Messages

return O;

10.3.5 msgrcv

The function prototype of the msgrcv APl is:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgrev (int msgfd, const void* msgPtr, int len, int mtype, int flag);

This API receives a message of type mtype from a message queue designated by the
msgfd. The message received is stored in the object pointed to by the msgPtr argument. The
len argument specifies the maximum number of message text bytes that can be received by
this call.

The msgfd value is obtained from a msgget function call.

The actual value of the msgPtr argument is the pointer to an object that has the struct
msgbuf-like data structure.

The mtype value is the message type of the message to be received. The possible values
and meaning of this argument are:

mtype value Meaning

0 Receive the oldest message of any type in the
queue

Positive integer Receive the oldest message of the specified mes-
sage type

Negative integer Receive a message whose message type is less than

or equal to the absolute value of the mtype. If there
is more than one message in the queue meeting this
criteria, receive the one that is the oldest and has
the smallest message type value.

The flag value may be 0, which means the process may be blocked if no messages in
the queue match the selection criteria specified by mfype. Furthermore, if there is a message
in the queue that satisfies the mrype selection criteria but is larger than len, the function
returns a failure status.

305

Chap. 10. UNIX System V Messages

If a process specifies IPC_NOWAIT in the flag value, the call will be nonblocking.
Also, if the MSG_NOERROR flag is set in the flag value, a message in the queue is selectable
(if larger than len). The function returns the first len byte of message text to the calling pro-
cess and discards the rest of the data.

The msgrev function returns the number of bytes written to the mtext buffer of the
object pointed to by the msgPtr argument or -1 if it fails.

The following test_msgrcv.C program is the same one depicted in the last section, but
after a message has been sent to the message queue, the process invokes the msgrcv API to
wait and retrieve a message of type 20 from the queue. If the call succeeds, the process prints
the retrieved message to the standard output; otherwise, it calls perror to print a diagnostic
message.

#include <iostream.h>
#include <stdio.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/ipc.h>
#include <sys/msg.h>

/* data structure of one message */
struct mbuf
{
long mtype;
char mtexttMSGMAX];
} mobj = { 15, “Hello” };

int main()

{
int perm = S_IRUSRIS_IWUSRIS_IRGRPIS_IWOTH;
int fd = msgget (100, IPC_CREATIIPC_EXCLIperm);

if (fd==-1 Il msgsnd(fd,&mobj,strlen(mobj.mtext)+1,IPC_NOWAIT))
perror(“message”); :

else if (msgrev(fd,&mobj, MSGMAX,20,IMSG_NOERROR) > 0)
cout << mobj.mtext << end!;

else perror(“msgrcv”);

return O;

Chap. 10.

10.3.6 msgcti

UNIX System V Messages

The function prototype of the msgct! APl is:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgetl (int msgfd, int cmd, struct msqid_ds* mbufPtr);

This API can be used to query the control data of a message queue designated by the
msgfd argument, to change the information within the control data of the queue, or to delete

the queue from the system.

The msgfd value is obtained from a msgget function call.

The possible values of cmd and their meanings are:

cmd value
IPC_STAT _

IPC_SET

IPC_RMID

Meaning

Copy control data of the queue to the object
pointed to by mbufPtr

Change the control data of the queue by those
specified in the object pointed to by mbufPtr. The -
calling process must be the superuser, creator, or
the assigned owner of the queue to be able to per-
form this task. Furthermore, this API can only set
the queue’s owner user ID and group ID, access
permissions and/or lower the msg_gbyte limit of
the queue

Remove the queue from the system. The calling
process must be the superuser, creator, or the
assigned owner of the queue to be able to perform
this task

This API returns O if it succeeds or -1 if it fails.

The following test_msgctl.C program “opens” a message queue with the key ID of 100
and calls msgctl to retrieve the control data of the queue. If both the msgget and msgctl calls
succeed, the process prints to the standard output the number of messages currently in the
queue,. It sets the queue owner user ID to be its own process ID via another msgctl call.
Finally, the process invokes msgctl again to remove the queue.

307

Chap. 10. UNIX System V Messages

#include <iostream.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/ipc.h>
#include <sys/msg.h>
int main()
{
struct msqid_ds mbuf;
int fd = msgget (100, 0);
if (fd>0 && msgcti(fd,IPC_STAT,&mbuf)) {
cout << “#msg in queue: “ << mbuf.msg_gnum << endi;
mbuf.msg_perm.uid = getuid(); // change owner user ID
if (msgcti(fd,IPC_SET,&mbuf)==-1)
perror(“msgctl”);
} else
perror(“msgctl’);
if (msgcti(fd,IPC_RMID,0)) perror(“msgctl - IPC_RMID");
return O;

10.3.7 Client/Server Example

This section depicts a client/server application using messages. The first program
server.C creates a daemon server process that runs in the background continuously to provide
services to its client processes. The client processes are created by running the client.C pro-
gram. The client processes post service requests to the daemon by sending messages to a
message queue owned and managed by the daemon. The daemon responds to the client by
sending messages to the same message queue.

Specifically, each service request message sent by a client process to the daemon server
consists of:

Message data field Meaning
message type Integer service request command
message text Client process ID in character string format (note

that data stored in this field can be any arbitrary
byte stream, including nonprintable characters)

The service request commands supported by the server are:

Chap. 10. UNIX System V Messages

Service req. command Service provided

1 Sends local date and time to client

2 Sends the Coordinated Universal Time (UTC) to
client

3 Removes the message queue and terminates the

daemon process. No response to client
4-99 Sends an error message back to client

Each response message sent by the server to a client consists of:

Message data field Meaning
message type Client process ID)
message text Service response data in character string format

Because both the server and its client interact through a common message queue, a
message class can be defined to encapsulate all the message API interfacing from application
programs. The following message.h header defines such a message class and is used by both
the server.C and client.C programs:

/* The message.h header used by both the client.C and server.C */
#ifndef MESSAGE_H

#define MESSAGE_H

#include <stdio.h>

#include <stdlib.h>

#include <memory.h>

#include <unistd.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#include <sys/wait.n>

/* common declarations for daemon/server process */
enum { MSGKEY= 176, MAX_LEN =256, ILLEGAL_CMD =4 h
enum { LOCAL_TIME = 1, UTC_TIME =2, QUIT_CMD = 3}

typedef struct mgbuf
{
long mtype;
char mtextiMAX_LEN];
} MSGBUF;
class message
{
private:

Chap. 10. UNIX System V Messages

it msgld; // message queue descriptor
struct mgbuf mObj;
public:
/* constructor. Get hold of a message queue */
message (int key)
{
it (msgld=msgget(key,IPC_CREATI0666)==-1)
perror(“msgget”);

|5

- /" destructor function. Do nothing */
~message () {};

/* Check message queue open status */
int good () { return (msgld>=0) 7 1:0;};

/* remove a message queue */
int rmQ ()

{ .
int rc=msgcti(msgld,IPC_RMID,0);
it (rc==-1) perror(“msgctl);

return rc;

|3

/* send a message */
int send (const void* buf, int size, int type)
{
mObj.mtype = type;
memcpy(mObj.mtext,buf,size);
if (msgsnd(msgld,&mObj,size,0)) {
perror("msgsnd”); return -1;

return O;

5

/* receive a message */
int rev (void* buf, int size, int type, int* rtype)
{
intlen = msgrev(msgid,&mObj,MAX_LEN,type, MSG_NOERROR);
if (len==-1) {
perror(“msgrev’); return -1;

/I Copy command or return data to buf and rtype
memcpy(buf,mObj.mtext,len);

if (rtype) *rtype = mObj.mtype;

310

Chap. 10. UNIX System V Messages

return len,
|3
|5
#endif

The advantage of using the message class is that application programs do not need to
use the underlying message APIs. They interface with a message object via a character buffer
and a message type, using almost the same interface as do the read and write APIs for files.
Thus. it reduces user programming effort. Furthermore, as will be seen in a later section, the
message class implementation can be changed to use different IPC methods, with no changes
required in the application code.

The following server.C program illustrates use of the message.h header:

#include <strstream.h>

#include “message.n”

#include <string.h> .
#include <signal.h>

int main()

{
int len, pid, cmdid, mypid = getpid();
char buf{256];
time_t tim;

/* setup this process as a daemon */
for (int i=0; i < 20; i++) sigset (i, SIG_IGN);
setsid();

cout << “server: start executing...\n" << flush;

message mqueue(MSGKEY); // open a message queue
if (Imqueue.good()) exit(1); /1 quit if queue open fails

/* wait for each request from a client */

while (Ien=mqueue.rcv(buf,sizeof(buf).-99,&cmdld) > 0)

{
/* extract a client's PID and check the PID is valid */
istrstream(buf,sizeof(buf)) >> pid; // same as pid = atoi(buf);
if (pid < 100) /1 0-100 are rese-ved for command IDs

cerr << “lllegal PID: “ << buf <</ << pid << endl;

continue;

)

311

C’hap. 10. UNIX System V Messages

/* Prepare response to a client */
cerr<<“server: receive cmd #” <<cmdid
<<", from client: “<<pid<<end!;
switch (cmdlid)
{
case LOCAL_TIME:
tim = time(0);
strepy(buf,ctime(&tim));
break;
case UTC_TIME:
tim = time(0);
strcpy(buf,asctime(gmtime(&tim)));
break;
case QUIT_CMD:
cerr << “server: deleting msg queue...\n”;
return mqueue.rmQ();
default: /* send an error msg back */
ostrstream(buf,sizeof(buf)) << “lliegal cmd: “ << emdld << "\0’;
}
/* send response to a client */
if (mqueue.send(buf,strien(buf)+1,pid)==-1)
cerr << “Server: “ << mypid << “ send response fails\n”;
}: /* 100p forever */
return 0;
}
J

The server process starts by setting itself up as a daemon process: It ignores all major
signals and makes itself a session and process group leader. The process is now independent
from its parent or sibling process.

The server process creates a message object with the key ID of 176 (this is chosen arbi-
trarily). The message constructor function creates a message queue if it does not preexist,
with the assigned key ID and an access permission of read-write for all.

Once a message object is created, the server goes into a polling loop, where it waits for
client processes to send service request messages to the message object. Specifically, since
client service request commands are restricted to the range of 1-99, the server will poll mes-
sages whose message types are anything less than 100. Once a service request is read, the
server checks that the client process ID is greater than 99 and sends a response message back
to the client based on the service request command. However, if the service command is
QUIT_CMD, the server deletes the message object and terminates itself.

One precaution in designing a program that uses messages is that a process should
rarely need to read messages sent by itself. Thus, it is important that the process use a differ-
ent st of message types for the outgoing and incoming messages. In the current example, the

312

Chap. 10. UNIX System V Messages

server response message types for clients are the clients’ process IDs. These process IDs are
always assumed to be larger than 100 (this is enforced in the clent.C program). Furthermore,
the clients’ service request message types are the service request commands (these com-
mands are in the range of 1-99). Therefore, the server reads only clients’ service request mes-
sages and not their response messages, and the clients only read the server’s response
messages and not its service request messages.

The client.C program is:

#include <strstream.h>
#include <string,h>
#include “message.h”

int main()
{
int cmdld, pid, mypid = getpid();
while (getpid() < 100)
switch (pid=fork(}) { // make sure client PID > 99
case -1: perror(“fork™), exit(1);
case 0: break;
default: waitpid(pid,0,0); exit(0);

}
cout << “client: start executing...\n"
message mqueue(MSGKEY), // create a message object
if (Imqueue.good()) exit(1); // quit if queue open fails

char procld[256], buf2[256];
ostrstream(procld,sizeof(procld)) << getpid() << \0’;

do {
/* Get a cmd from the standard input */
cout << “cmd> “ << flush; // print an input prompt
cin >> cmdid; // get a command from a user
cout << endl; // force a <CR> at console

if (cin.eof()) break; // exit if EOF

/* check cmd is valid */
if (Icin.good() Il cmdid < 0O il cmdid > 99) {
cerr << “Invalid input: “ << cmdld << endl; continue;
}
/* send request to daemon */
if (mqueue.send(procld,strlen(procld),cmdid))
cout << “client: “ << getpid() << “ msgsnd error\n”;

else if (cmdid==QUIT_CMD) break; /* exit on QUIT_CMD */

313

Chap. 10. UNIX System V Messages

* receive data from daemon */
else if (mqueue.rcv(buf2,sizeof(buf2),mypid,0)==-1)
cout << “client: “* <<mypid << “ msgrcv error\n”;

/* print server’s response data */
else cout << “client: “ << mypid <<*“ * << buf2 << end;

} while (1); /* loop until EOF */

cout << “client: “ << mypid << “ exiting...\n” << flush;
return O;

}

The client program starts by first making sure its process ID is greater than or equal to
100. If this is not the case, it calls fork recursively until one of its child process IDs is greater
than or equal to 100. In this process, all nonqualified “parent” processes simply wait for their
child process to terminate before they terminate themselves. This is a simple way of guaran-
teeing that the client/server interaction condition (namely, that the client process 1D be
greater than 99) is met.

Once a client process is created, it “opens” a message object with the same key ID as
the server. It then enters a loop, where it iteratively prompts users to enter a setvice request
command from the standard input. For each command it receives, it checks whether the con-
mand is in the range of 1-99 then sends a service request message to the server process. Aftet
that, it reads the service response back from the server and prints the corresponding data to
the standard output.

The client process terminates when EOF is encountered in the standard input (e.g., user
presses <ctrl-D>) or an error is encountered in reading the standard input.

Some sample interaction of these client and server programs are:

chp13 % server &

server: start executing...

[1] 356

chp13 % client

client. start executing...

cmd> 1

server: receive cmd #1, from client: 357
client: 357 Tue Jan 24 22:23:17 1995
cmd> 2

server: receive cmd #2, from client: 357

314

Chap. 10.

POSIX.1b Messages

client: 357 Wed Jan 25 06:23:19 1995
cmd> 4

server: receive cmd #4, from client: 357
client: 357 lllegal cmd: 4

cmd> 3

client: 357 exiting...

server: receive cmd #3, from client: 357
server: deleting msg queue...

[1] Done mserver

chp13 %

Although the above example shows only one client interacting with a server, there can
be multiple client processes running simultaneously and interacting with the same server.

10.4 POSIX.1b Messages

POSI1X.1b messages are created and manipulated in a manner similar to UNIX System
V messages. Specifically, the POSIX.1b defines the <mqueue.h> header and a set of mes-

sages APIs:

int

int

int

int

int

int

#include <mqueue.h>

mqd_t

mq_opén(char* name, int flags, mode_t mode,
struct mq_attr* attrp);

mq_send (mqd_t mqid, const char* msg, size_t len,
unsigned priority);

mq_receive (mad_t mqid, char* buf, size tlen, unsigned* prio);
mq_close (mqd_t mqid);

mq_notify (mqd_t mqid, const struct mq_sigevent* sigvp);
mq_getattr (mqd_t mqid, struct mq_attr* atttrp);

mgq_setattr (mqd_t mqid, struct mq_attr* atttrp,
struct mq_attr* oattrp);

315

Chap. 10. POSIX.1b Messages

The mq_open AP is like the msgget function: It returns a handle of type mgd_t, which
designates a message queue. Note that mgd_t is not an integer descriptor.

The message queue "opened” by the mg_open function is given a name as specified in
the name argument. The name value should be a UNIX path name-like character string and
should always begin with the “/” character. It is implementation-dependent of whether addi-
tional “/” characters are allowed in the name value. Furthermore, users should not expect that
a file with the same name is created by this call.

The flags argument specifies the access manner of the queue by a calling process. Its
values may be O_RDONLY (the calling process can only receive messages), O_ WRONLY
(the calling process may only send messages), or O_RDWR (the calling process may send
and receive messages). Furthermore, the O_CREAT flag may also be specified to indicate
that if the named queue does not exist, it should be created. Moreover, if the O_EXCL flag is
specified with the O_CREAT flag, it forces the function to abort if the named queue already
exists.

Finally, the O_NONBLOCK flag may also be specified in an oflag value to indicate that
future access of the message queue (via mg_send and mq_receive APIs) should be nonblock-
ing.

The mode and attrp arguments are needed only if the O_CREAT flag is specifisd in the
oflag argument. They specify read-write access permission and special attributes for a mes-

sage queue created by this call. The struct mq_attr data type is defined in the <mgeue.h>
header.

The function returns a mqd_t-type message queue handle if it succeeds or a (mqd_t)-1
value if it fails.

For example, the following opens and creates, if necessary, a message queue /foo for
read-write access. The access permission assigned to a newly create queue are read-write for
the owner only. Furthermore, the new message queue may hold up to 200 messages, each
message not to exceed 1024 bytes:

struct mq_attr attrv;, // contains attributes for a new queue
attrv.mg_maxmsg = 200; // at most 200 msg may be in a queue
attrv.mqg_msgsize = 1024; /I at most 1024 bytes per message

attrvmq_flags = 0;

mad_t mqid = mq_open(“/foo”, O_RDWRIO_CREAT, S_IRWXU, &attrv);
if (mqid == (mqd_t)-1) perror(“mq_open”);

316

Chap. 10. POSIX.1b Messages

The mq_send API sends a message to a message queue referenced by the mqid argu-
- ment. The msg argument value is the address of a buffer that contains a message text, and the
len argument specifies the message text size in number of characters. The len value should be
less than the message queue limit (maximum size per message); otherwise, the call will fail.

The priority argument value is an integer between 0 and MQ_PRIO_MAX. Itis used to
sort messages in a queue-messages with higher priority values are accessed earlier than those
with lower priority values. Furthermore, if two or more messages have the same priority
value in a queue, they are sorted in decreasing order, based on their duration in the queue.
The older messages are retrieved before the newer ones.

The function returns O if it succeeds and -1 if it fails. Note that the function may block
a calling process if the mcssage queue is already full. However, if the queue was opened with
the O_NONBLOCK flag, the function aborts and returns immediately with a -1 failure status.

The following example sends a message Hello POSIX.1b to a message queue, desig-
nated by mgqid, with a priority value of 5:

char* msg = “Hello POSIX.1b";
if (ma_send(mqid, msg, strlen(msg)+1, 5)) perror(“mq_send”),

The mq_receive API receives the oldest and highest priority message from a message
queue referenced by the mgid argument. The buf argument value is the address of a buffer
containing the message text, and the len argument specifies the maximum size of the buf
argument. If a message to be received is larger than len bytes, the function will return a fail-
ure status.

The priop argument is the address of an unsigned integer variable holding the priority
value of the receiving message. If the argument value is given as NULL, the receiving mes-
sage's priority value is a don’t-care.

The function returns the number of message text bytes that has been put in the buf argu-
ment if it succeeds or -1 if it fails. Note that the function may block a calling process if the
message queue is empty. However. if the queue was opened with the O_NONBLOCK flag,
the function aborts and returns immediately with a -1 failure status.

If muitiple processes are blocked on the mq_receieve call, then when a message arrives
in the queue, the process with the highest priority and the longest waiting time gets the mes-
sage.

The following example recetves a message from a message queue designated by mgid:

317

Chap. 10. POSIX.1b Messages

char buf{256];

unsigned prio;

if (mq_receieve(mqid, buf , sizeof buf, &prio)==-1) perror(“mq_receieve”);
cerr << “receive msg: " << buf << “, priority=" << prio << endl;

The mq_close API deallocates resources used to associate a message queue with a mes-
sage handle, mgid. This function returns a 0 if succeeds or -1 if it fails.

The mq_notify APl is used if a process wishes to receive asynchronous notification of a
message’s arrival at an empty queue, instead of being blocked by a mq_receieve call to wait
for such an event. The mgqid argument designates a message queue to monitor message
arrival; the sigvp argument value is the address of a struct sigevent-type variable. The struct
sigevent data type is defined in the <signal.h> header and contains the signal number which
should be generated by the calling process when a message arrives at the designated message
queue.

This function fails if there is a process that has already registered signal notification for
the same message queue or is blocked by a mq_receieve call. Furthermore, even if a process
succeeds with the mq_notify call and a notification signal is delivered (because a message has
arrived at the message queue), it may still be unable to receive the message if another process
issues a mq_receieve call before it does.

Finally, if the sigvp argument value is specified as NULL, the call unregisters signal
notification for a specified message queue. The signal notification is also unregistered if the
process already exists or calls the mq_close API op the message queue handle.

This function returns 0 if it succeeds or -1 if it fails.

The following example registers a SIGUSR!1 signal to be delivered to the calling pro-
cess if any message arrives at the message queue designated by the mqid variable:

struct sigevent sigv;

sigv.sigev_notify = SIGEV_SIGNAL; /1 signal notification is requested
sigv.sigev_signo = SIGUSRT,; // send SIGUSR1 for notification
if (mq_notify(mgqid, &sigv)==-1) perror(“mq_notify”);

The mg_getattr API queries attributes of a message queue designated by the mqid argu-
ment. The attrp is the address of a struct mq_attr type variable. The struct mgq_attr data type
is defined in the <mqeue.h> header. Some of its useful member fields and their meanings are:

318

Chap. 10.

Member Field
mq_flags

mq_maxmsg

mqg_msgsize
mg_curmsgs

POSIX.1b Messages

Meaning
Specifies whether the queue operation is blocking.
Possible va}ue is either 0 or O_NONBLOCK

Maximum number of messages allowed in the
queue at any one time

Maximum size, in bytes, allowed per message
Number of messages currently in the queue

This function returns O if it succeeds or -1 if it fails.

The following example obtains attribute information for a message queue designated

by the mqid variable:

struct mq_attr attrv;

if (mg_getattr(maid, &attrv)==-1)

perror(“mq_getattr’);

else cout << ‘flags = “ << attrv.mq_flags

<< " cur no. msg: “ << attrv.mq_curmsgs << endl;

The mq_setattr API sets the mq_atrr::mq_flags attribute of a message queue designated
by the mqid argument. The attrp is the address of a struct mq_attr type variable. This is the
input argument to the function, and only the attrp->mgq_flags value is used by the function.
The legal value of this member field is either O (use blocking operation on the queue) or
O_NONBLOCK (use nonblocking operation on the queue). The oattrp argument value, if
specified as the address of a struct mgq_attr-typed variable, returns the same information as
the mq_getattr call prior to the mq_setattr call.

This function returns O if it succeeds or -1 if it fails.

The following example sets a message queue referenced by the mgqid variable to use
nonblocking operations. The old message queue attributes are ignored.

struct mq_attr attrv;

attrv.mq_flags = O_NONBLOCK;
it (mq_setattr(mgid, &attrv,0)==-1) perror(“mq_setattr’);

10.4.1 POSIX.1b Message Class

The message class defined in Section 10.3.7 is for UNIX System V messages only. The
following message2.h header defines a new message class that uses POSIX.1b message APIs.
Note that the new message class interface is the same as that in Section 10.3.7:

319

Chap. 10. POSIX.1b Messages

#ifndef MESSAGE2_H

#define MESSAGE2_H

#include <stdio.h>

#include <memory.h>

#include <sys/ipc.h>

#include <mqueue.h> // use POSIX.1b messages APls

/* common declarations for daemon/server process
enum { MSGKEY=186, MAX_LEN=256, ILLEGAL_CMD = 4};
enum { LOCAL_TIME =1, UTC_TIME =2, QUIT_CMD =3 };
struct mgbuf
{

long mtype;

char mtext{MAX_LEN];
I8

/* POSIX.1b message class */
class message

{
private:
mqd_t msgld; / message queue handle
struct mgbuf mObj;
public:

/* System V compatible constructor function */
message(int key)
{

char name[80);

sprintf(name,/MQUEUE%d" key);

if ((msgld=mq_open(name,O_RDWRIO_CREAT,0666,0))

== (mqd_r)-1)
perror(“mq_open”);

b

/* POSIX.1b style constructor function */
message(const char* name)
{
it (msgld=mq_open(name,O_RDWRIO_CREAT,0666,0))
== (mqd_r)-1)
perror(“mq_open”);
I8

/* destructor function */
~message() { (void)mqg_close(msgld); };

I* check queue open status */
int good() { return (msgld >=0) 2 1:0; };

320

Chap. 10.

|3

POSIX.1b Messages

/* remove message queue */

int rmQy()
{

return mqg_close(msgld);

L

/* send a message */
int send(const void* buf, int size, int type)
{
mObj.mtype = type;
memcpy(mObj.mtext,buf,size); ,
if (mg_send(msgld,(char*)&mObj,size,type)) {
perror(“mq_send”);
return -1;
I8
return O;

b

/* receive a message */
int rev(void* buf, int size, int type, unsigned* rtype)
{
struct mq_attr attrv;
if (mq_getattr(msgld,&attrv)==-1) {
perror(“mq_getattr”);
return -1;

}

if (lattrv.mq_curmsgs) return -1, // no messages

int len = mq_receive(msgld,(char*)&mObj,MAX_LEN,rtype);
if (len < 0) {

perror(“mg_receieve”);

return -2;

}

if (type && ((type > 0 && type!="rtype) ||
(type < 0 && -type < *rtype)))
mq_send(msgld, (char*)&mObj, len, *rtype);
return -3; // not the requested type

memcpy(buf,mObj.mtext,len);
return len;

b

#endif /* MESSAGE2_H */

321

Chap. 10. UNIX System V Semaphores

The POSIX. b version of the message class, as shown above, can be used in the same
manner as the System V version. Specifically, there are two message::message constructor
functions, one is invoked with an integer key and the other with a message name. In either
way, the mg_open function is called to open and create, if necessary, a message queue.

The message::send, message::rcv and message::~message functions have exactly the
same interface as that of the System V message class. The only difference is that the
POSIX.1b message::rcv function cannot really select messages based on a user’s specified
message type. Thus, the function gets the highest priority message from a queue. If the mes-
sage type does not satisfy the user-defined message type, the function pushes the message
back to the queue and returns a -1 failure status. A message type satisfies a user-defined type
if: (1) the user-defined type is 0 (message type is don’t-care); (2) the user-specified type
matches the received message type exactly; or (3) the user-specified type is negative and the
absolute value of that type is greater than or equal to the receiving message type.

The new message2.h header can be used in the same client and server programs as
depicted in Section 13.3.7. The output of the newly compiled client and server programs
should be identical to that of the System V version.

10.5 UNIX System V Semaphores

Semaphores provide a method to synchronize the execution of multiple processes.
Semaphores are allocated in sets of one or more. A process can also use multiple semaphore
sets. Semaphores are frequently used along with shared memory to establish an elaborate
method for interprocess communication.

The UNIX System V semaphore APIs provide the following functions:

* Create a semaphore set

* “Open” a semaphore set and get a descriptor to reference the set.

* Increase or decrease the integer values of one more semaphores in a set
* Query the values of one or more semaphores in a set

* Query or set control data of a semaphore set

Each semaphore has an unsigned short value. A process that has read permission for
semaphores may query their values. A process that has write permission for semaphores can
increase or decrease their values. If a process attempts to decrease a semaphore value such
that the resultant value becomes negative, the operation, as well as the process, will be
blocked until another process increases the semaphore’s value to a number large enough that
the blocked process’s operation can succeed (i.e., the resultant semaphore value is 0 or a pos-
itive number). This forms the basis for multiprocess synchronization using semaphores:

Chap. 10. UNIX System V Semaphores

* A process X that wishes to wait for another process Y decreases the value of one or
more semaphores by some value such that it is blocked by the kernel

« When process Y is ready to let X resume execution, it increases the semaphores’ val-
ues enough for X’s semaphore operation to succeed. The kernel unblocks X

If a semaphore’s value is a positive integer but a process explicitly queries 1ts value as
to whether it is zero, the process will be blocked until the semaphore’s value is decreased to
zero by another process.

If a process has access to a set of semaphores, it can perform operations on individual
semaphores in the set or operate on two or more semaphores in the set simultaneously. In the
latter case, if an operation cannot be performed on any of the selected semaphores, the entire
operation fails, and the values of the semaphore set are unchanged. Thus, the semaphore
operations are atomic at the set level. This is to ensure that when two or more processes
attempt to read and write values on the same semaphore set, only one can perform operations
at a given time.

10.5.1 UNIX Kernel Support for Semaphores

In UNIX System V.3 and V.4, there is a semaphore table in the kernel address space
that keeps track of all semaphore sets created in the system. Each entry of the semaphore
table stores the following data for one semaphore set: :

« A name that is an integer ID key assigned by the process which created the set.
Other processes may specify this key to “open” the set and get a descriptor for future
access of the set

« The creator user ID and group ID. A process whose effective user ID matches a
semaphore set creator user ID may delete the set and also change control data of the
set

« The assigned owner user ID and group ID. These are normally the same as the cre-
ator user and group IDs, but a creator process can set these values to assign a differ-
ent owner and group membership for the set .

« Read-write access permission of the set for owner, group members, and others. A
process that has read permission to the set may query values of the semaphores and
queries the assigned users and group IDs of the set. A process that has write permis-
sion to a set may change the values of semaphores

¢ The number of semaphores in the set

. » The time when the last process changed one or more semaphore values

« The time when the last process changed the control data of the set

* A pointer to an array of semaphores

323

Chap. 10. UNIX System V Semaphores

Semaphores in a set are referenced by array indices. such that the first semaphore.in the
set has an index of zero; the second semaphore has an index of 1; and so on. Furthermore,
each semaphore stores the following data:

* The semaphore’s value ,

* The process ID of the last process that operated on the semaphore

* The number of processes that are currently blocked pending the increase of sema- -
phore value

* The number of processes which are currently blocked pending the semaphor’s value
becoming zero

Figure 10.3 depicts the UNIX kernel data structure for semaphores.

Like messages, semaphores are stored in a kernel address space and are persistent,
despite their creator process’s termination. Furthermore, each semaphore set has an assigned
owner, and only processes that have superuser, set creator, or assigned owner privileges may
delete the set or chinge its control data. If a semaphore set is deleted, any processes that are
blocked at that time due to the semaphores are awakened by the kernel - the system calls they
invoked are aborted and return a -1 failure status.

I >

semaphore table

Figure 10.3 Kernel data structure for semaphores

Finally, there are several system-imposed limits on the manipulation of semaphores.
These limits are defined in the <sys/sem.h> header:

System limit Meaning

SEMMNI The maximum number of semaphore sets that may
exist at any given time in a system

SEMMNS - “ The maximum number of semaphores in all sets

that may exist in a system at any one time

324

Chap. 10.

System limit
SEMMSL

SEMOPM

UNIX System V Semaphores

Meaning

The maximum number of semaphores allowed per
set

The. maximum number of semaphores in a set that
may be operated on at any one time

The effects of these system-imposed limits on processes are:

« If a process attempts to create a new semaphore set that causes either the SEMMNI
or the SEMMNS limit to be exceeded, the process will be blocked until one or more
existing sets are deleted by a process.

« If a process attempts to create a semaphore set with more than SEMMSL sema-

phores, the system call fails.

« If a process attempts to operate on more than SEMOPM semaphores in a set in one

operation, the system call fails.

10.5.2 The UNIX APIs for Semaphores

The <sys/ipc.h> header defines a struct ipc_perm data type, which stores the user ID;
group ID, creator user ID and group ID, assigned name key, and the read-write permission of

a semaphore set.

The semaphore table entry data type is struct semid_ds, which is defined in the <sys/
sem.h> header. The data fields of the structure and the data stored are:

Data field
sem_perm
sem_nsems
sem_base
sem_otime
sem_ctime

Data Stored

Data stored in a struct ipc_perm record

Number of semaphores in the set

Pointer to an array of semaphores

Time when last process operated on semaphores
Time when last process changed control data of the
set

In addition to the above, the struct sem data type, as defined in the <sys/sera.h> header,

defines the data stored in a semaphore:

Data field
semval
sempid

semncnt

Data Stored

Current semaphore’s integer value

Process ID of the last process that operated on the
semaphore :

Number of processes that are blocked waiting for

325

Chap. 10. UNIX System V Semaphores

the semaphore’s value to be increased

semzcnt Number of processes that are blocked waiting for
the semaphore’s value to become zero

Figure 10-4 illustrates uses of the aforementioned structures in the semaphore table and
semaphore records.

struct sem _struct sem

struct semid_ds > [I

sem_base

semaphore table

Figure 10-4. Data types of the semaphore table and semaphore record

The UNIX System V semaphore APIs are:

Semaphores AP1 Usages

semget Open and create, if needed, a semaphore set

semop Change or query semaphore value

semctl Query or change contrnl data of a semaphore set or
delete a set '

The header files needed for the semaphore APIs are:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

10.5.3 semget

The function prototype of the semget API is:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key_t key, int num_sem, int flag);

326

Chap. 10. UNIX Systern V Semaphores

This function “opens” a semaphore set whose key ID is given in the key argument. The
function returns a nonnegative integer descriptor that can be used in the other semaphore
APIs to change or query-semaphore value and tc query and/or set control data for the sema-
phore set.

If the value of the key argument is a positive integer. the APl attempts to open a sema-
phore set whose key 1D matches that value. Howevet, if the kev value is the manifested con-
stant IPC_PRIVATE, the API allocates a new semaphore set to be used exclusively by the
calling process. Specifically, the “private” semaphores are usually allocated by a parent pro-
cess which then forks one or more child processes. The parent and child processes then use
the semaphores to synchronize their operations.

If the flag argament is 0. the API aborts when there is no semaphore set whose key ID
matches the given key value. Otherwise. it returns a descriptor for that set. If a process wishes
to create a new set with the given key ID (if none preexists), then the flag value should be the
bitwise-OR of the manifested constant IPC_CREAT and the read-write access permissions
for the new set.

The num_sem value may be 0 if the IPC_CREAT flag is not specified in the flag argu-
ment, or it is the number of semaphores to be allocated when a new set is to be created.

For example, the following system call creates a two-element semaphore set with the
key ID of 15 and access permission of read-write for owner and read-only for group members
and others (if such a set does not preexist). The call returns an integer descriptor for future
references of the queue:

int perms = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
int semfdesc = semget (15, 2, IPC_CREAT | perms);

If a process wishes to guarantee creation of a new semaphore set, it can specify the
IPC_EXCL flag with the IPC_CREAT fiag, and the API will succeed only if it creates a new
set with the given key.

The API returns a -1 value it if fails.

10.5.4 semop

The function prototype of the semop API is:

327

Chap. 10. UNIX System V Semaphores

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (int semfd, struct sembuf* opPtr, int len);

This API may be used to change the value of one or more semaphores in a set (as des-
ignated by semfd) and/or to test whether their values are 0. The opPtr is the pointer to any
array of struct sembuf objects, each of which specifies one operation (query or change value)
for a semaphore. The len argument specifies how miany entries are in the array pointed to by
opPtr.

The struct sembuf data type is defined in the <sys/sem.h> header as:

struct sembuf

{
short sem_num; // semaphore index
short sem_op; // semaphore operation
short sem_flg; /I operation flag(s)

I8

The possible values of sem_op and their meanings are:

sem_op value Meaning

a positive number Increase the indexed semaphore value by this
amount

a negative number Decrease the indexed semaphore value by this
amount

a zero Test whether the semaphore value is 0

If a semop call attempts to decrease a semaphore’s value to a negative number, or if it
tests a semaphore’s value as O but it is not, then the calling process will be blocked by the ker-
nel. This will occur unless the IPC_NOWAIT flag is specified in the sem _fig fields of the
array entries where sem_op is a negative number or zero.

Another flag that may be specified in the sem_flg fields of the struct sembuf objects is
SEM_UNDO. This instructs the kernel to keep track of the net semaphore value change on
the indexed semaphore (due to the semop call). When the calling process terminates, the ker-
nel will reverse these changes so that any other processes awaiting such changes will not be
locked out indefinitely. This would occur because the exiting process forgot to undo the
changes it made to the semaphore set.

328

Chap. 10. . UNIX System V Semaphores

The API returns a O if it succeeds or -1 if it fails.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

/* decrease 1st serhaphore value by 1, test 2nd semaphore value is zero */
struct.semid_ds sbuf[2] = {0, -1, SEM_UNDOIIPC_NOWAIT}, {1.0,0} };

int main()

{
int perms = S_IRWXU | S_IRWXG | S_IRWXO;
int fd = semget (100, 2, IPC_CREAT | perms);
if (fd==-1) perror(“semget’), exit(1);
if (semop(fd,sbuf,2)==-1) perror(“semop”);
return O;

}

This example opens a two-element semaphore set with the key ID of 100, and it creates
the set with read-write permission for all (if it does not preexist).

If the semget call succeeds, the process calls semop to decrease the first semaphore
value by 1 and tests the second semaphore value as zero. Furthermore, it specifies the
IPC_NOWAIT and SEM_UNDO flags when it operates on the first semaphore.

10.5.5 semcti

The function prototype of the semctl AP is:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semct! (int semfd, int num, int cmd, union semun arg);

This Ar1 can be used to query or change the control data of a semaphore set designated
by the semfd argument or to delete the set altogether.

329

Chap. 10. UNIX System V Semaphores

The semfd value is the semaphore set descriptor, as obtained from a semget function
call.

The num value is a semaphore imdex where the next argument, cmd, specifies an opera-
tion to be performed on a specific semaphore within a set.

The arg argument is a union-typed object that may be used to specify or retrieve the
control data of one or more semaphores in the set, as determined by the cmd argument. The
union semun data type is defined in the <sys/sem h> header as:

union semun

{
int val; /I a semaphore value
struct semid_ds *buf; // control data of a semaphore set
ushort *array; // an array of semaphore values

¥
The possible values of cmd*and their meanings are:

cmd value Meaning

IPC_STAT Copy control data of the semaphore to the object
pointed to by arg.buf. The calling process must
have read permission to the set

IPC_SET Change the control data of the semaphore set by
those data specified in the object pointed to by
arg.buf. The calling process must be the supervi-
sor, creator, or the assigned owner of the set to be
able to perform this task. Furthermore, this API
can establish only the set owner user and group IDs
and access permission of the queue

IPC_RMID Remove the semaphore from the system. The call-
ing process must be the superuser, creator, or the
assigned owner of the queue to be able to perform

this task

GETALL Copy all the semaphore values to the array pointed
to by arg.array

SETALL Set all the semaphore values by the corresponding

. ' values contained in an array pointed to by
‘ arg.array

GETVAL Return the num-indexed semaphore value. arg is

unused

Chap. 10. UNIX System V Semaphores

cmd value Meaning

SETVAL Set the num-indexed semaphore value by the value
specified in arg.val

GETPID Return the process ID of the last process that oper-
ated on the num-indexed semaphore. arg is un-
used

GETNCNT Return the number of processes that are currently

blocked waiting for the num-indexed semaphore
value to increase. arg is unused

GETZCNT Return the number of processes that are currently
blocked waiting for the num-indexed semaphore
value to become zero. arg is unused

This API returns a cmd-specific value if it succeeds or -1 if it fails.

The following test_sem.C program “opens” a semaphore set with the key ID of 100 and
calls semectl to retrieve the control data of the set. If both the semget and semct! calls are suc-
cessful, the process prints to the standard output the number of semaphores in the set. It then
sets the set owner user ID as its own process ID, via.another semctl call. Finally, the process
invokes semctl again to remove the set.

#include <iostream.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/ipc.h>
#include <sys/sem.h>

union semun {
int val;
struct semid_ds *mbuf;
ushort *array;

} arg;

int main()
{
struct semid_ds mbuf;
arg.mbuf = &mbuf;
int fd = semget (100, O, 0);
if (fd>0 && semctl(fd,0, IPC_STAT,arg)) {
cout << “#semaphores in the set* << arg.mbuf->sem_nsems<< endi;
arg.mbuf->sem_perm.uid = getuid(); // change owner user iD

331

Chap. 10. POSIX.1b Semaphores

it (semctl(fd,0,IPC_SET,arg)==-1) perror(“semctl”);
}

else perror(“semctl”);
if (semcti(fd,0,IPC_RMID,0)) perror(“semctl - IPC_RMID");
return O;

10.6 POSIX.1b Semaphores

The POSIX.1b semaphores are created and manipu'ated in a manner similar to those in
UNIX System V. Specifically, the <semaphore.h> header and the following APIs are defined
by the POSIX.1b:

#include <semaphore.ﬁ>

sem_t* sem_open(char* name, int flags, mode_t mode, unsigned init_value);
int sem_init (sem_t* addr, int pshared, unsigned fnit_value);

int sem_getvalue (sem_t* idp, int* valuep);

int sem_close (sem_t* idp);

int sem_destroy (sem_t* id);

int sem_unlink (char* name);

int sem_wait (sem_t* idp);

int sem_trywait (sem_t* idp);

int sem_post (sem_t* idp);

The POSIX.1b semaphores differ from those of UNIX System V in the following ways:

* POSIX.1b semaphores are either identified by a UNIX path name (as created via
sem_open), or remain unnamed (but given a starting virtual address as created via
sem_init). System V semaphores are identified by an integer key

* POSIX.1b creates one semaphore for each sem_open-or sem_init call, whereas mui-
tiple System V semaphores can be created for each semget call

* A POSIX.1b semaphore value is increased or decreased by a value of 1 for each
sem_post and sem_wait call, respectively. With System V semaphores, users can
increase or decrease semaphore value by any integer value for each semop call

332

Chap. 10. POSIX.1b Semaphores

The sem_open function creates a semaphore whose name is given by the name argu-
ment. The syntax of the name argument value is the same as that for POSIX.1b messages.
The flags argument value may be 0 if it knows that the named semnaphore already exists. Oth-
erwise, the O_CREAT flag specifies that a semaphore of the given name should be created. In
addition, the O_EXCL flag may be specified with the O_CREAT flag to force the function to
return a failure status if a semaphore of the given name already exists. The mode and
init_value arguments are used for a newly create semaphore. Specifically, the mode argument
value is the read-write permission for user, group, and others to be assigned to the new sema-
phore. The init_value argument value is an unsigned integer value to be assigned to the sema-
phore.

The function returns a sem_t pointer if it succeeds or -1 if it fails.

The sem_init function is an alternative to the sem_open function. A process that uses
sem_init first allocates a memory region for the semaphore to be created. This memory region
may be a shared memory if the semaphore is to be accessed by other processes. The memory
region address is passed as value to the addr argument of sem_init. The pshared argument
value is 1 if the semaphore is to be shared with other processes, 0 otherwise. The init_value
argument specifies the initial integer value to be assigned to the semaphore. This value should
not be a negative number.

The function returns a 0 value if it succeeds or -1 if it fails.

The sem_getvalue function returns the current value of a semaphore designated by the
idp argument. The return value is passed via the valuep argument. The function returns 0 if it
succeeds or -1 if it fails.

The sem_post function increases a semaphore value by 1, whether the sem_wait func-
tion decreases its value by 1. A semaphore is designated by the idp argument in both func-
tions. If the value is already zero, the sem_wait function will block the calling process until it
can succeed in its operation. The sem_trywait is similar to sem_wait, except that it is non-
blocking and returns a -1 failure status (if it cannot decrease a specified semaphore value).

The sem_close and sem_unlink functions are used with semaphores created by the
sem_open function. The sem_close function disassociates a semaphore from a process, and
the sem_unlink function removes a semaphore from the system.

The sem_destroy function is used with semaphores that are created by the sem_init
function. It deletes a semaphore from the system.

All the sem_post, sem_wait, sem_trywait, sem_close, sem_unlink, and sem_destroy
functions return 0 if they succeed or -1 if they fail.

Chap. 10. POSIX.1b Semaphores

The following test_semp.C example creates a semaphore of the name /sem.0 and ini-
tializes it with a value of 1. If the semaphore is created successfully, the process does a
sem_wait on it, bringing the semaphore value to 0, then performs a sem_post to increase the
value back to 1. Finally, the process closes the semaphore handle via sem_close and removes
the semaphore from the system via the sem_unlink API.

#include <stdio.h>
#include <sys/stat.h>
#include <semaphore.h>

int main()
{
sem_t *semp = sem_open(“/sem.0", O_CREAT, S_IRWXU, 1);
if (semp==(sem_t*)-1) { perror(“sem_open”); return -1; }
if (sem_wait(semp)==-1) perror(“sem_wait");
if (sem_post(semp)==-1) perror(“sem_post");
if (sem_close(semp)==-1) perror(“sem_clase”);
if (sem_unlink(“/sem.0") == -1) perror(“sem_unlink”);
return O;

The second example below, test_semp2.C, uses sem_init to create a semaphore at a
dynamic address created by the process via malloc. The semaphore is specified as unshared
(pshare value is zero), and its initial value is set to 1. If the semaphore is created, the
sem_getvalue APl is called to obtain the current value, and the process depicts the value to

the standard output. Finally, the semaphore is destroyed from the system via the sem_destroy
APL

#include <iostream.h>
#include <stdio.h>
#include <malloc.h>
#include <semaphore.h>

int main()
{
int val;
sem_t semval;
if (sem_init (&semval, 0, 1)==-1) {
perror(“sem_init"); return 2;
}

if (sem_getvalue(&emval, &val)==0)

Chap. 10. UNIX System V Shared Memory

cout << “semaphore value: “ << val << end|;
if (sem_destroy(&semval) == -1)
perror(“sem_destroy”),
return O;

10.7 UNIX System V Shared Memory

Shared memory allows multiple processes o map a portion of their virtual addresses to
a common memory region. Thus, any process can write data to a shared memory region and
the data are readily available to be read and modified by other processes.

Shared memory was invented to improve on the performance problem of messages:
when a message is sent from a process to a message queuc, the data are copied from the pro-
cess virtual address space to a kernel data region. Then when another process receives this
message, the kernel copies the message data from the region to the receiving process’s virtual
address space. Thus, message data are copied twice: From process to kernel and then to
another process. Shared memory, on the other hand, does not have this data transfer over-
head: Shared memory is allocated in the kernel virtual address when a process reads or writes
data via a shared memory. The data is manipulated directly in the kernel memory region.
However, shared memory does not provide any access control method for processes that use
it. Therefore, it is a common practice to use semaphores, along with shared memory, to
implement an interprocess communication media.

After a process attaches to a shared memory region, it gets a pointer to reference the
shared memory. It can be used as if it was obtained via a dynamic memory allocator (i.e.,
new). The only difference is that data in a shared memory are persistent and do not go away,
even if the process creating the shared memory region terminates.

There can be multiple shared memory regions existing in a given system at any one
time.

10.7.1 UNIX Kernel Support for Shared Memory

In UNIX System V.3 and V.4, there is a shared memory table in the kernel address
space that keeps track of all shared memory regions created in the system. Each entry of the
table stores the following data for one shared memory region:

+ A name that is an integer ID key assigned by the a process that created the shared
memory. Other.processes may specify this key to “open” the region and get a
descriptor for future attachment to or detachment from the region

335

Chap. 10. UNIX System V Shared Memory

* The creator user and group IDs. A process whose effective user ID matches a shared
memory-region creator user ID may delete the region and may change control data
of the region

* The assigned owner user and group IDs. These are normally the same as those of the
creator user and group IDs, but a creator process can set these values to assign dif-
ferent owner and group membership for the region

* Read-write access permission of the region for owner, group, members, and others.
A process that has read permission to the region may read data from it and query the
assigned user and group IDs of the region. A process that has write permission to a
region may write data to it

* The size, in number of bytes, of the shared memory region

* The'time when the last process attached to the region

* The time when the last process detached from the region

* The time when the last process changed control data of the region

Figure 10.5 depicts the kernel data structure for shared memory.

—
e —
| shared memory regio

struct shmid_ds

shared memory table Process Table
Figure 10.5 Kemel data structure for shared memory

Like messages and semaphores, shared memory is stored in kernel address space, and
they are persistent, even if their creator processes no longer exist. Furthermore, each shared
memory has an assigned owner, and only processes that have superuser, creator, or assigned
owner privileges may delete the shared memory or change its control data.

Finally, there are several system-imposed limits on the manipulation of shared memory.
These limits are defined in the <sys/shm.h> header:

System limit Meaning

SHMMNI The maximum number of shared memory regions
that may exist at any given time in a system

SHMMIN The minimum size, in number of bytes, of a shared

memory region

Chap. 10.

System limit

SHMMAX

UNIX System V Shared Memory

Meaning
The maximum size, in number of bytes, of a shared
memory region

The effects of these system-imposed limits on processes are:

» If a process attempts to create a new shared memory, causing the SHMMNI limit to
be exceeded, the process will be blocked until an existing region is deleted by

another process

+ If a process attempts to create a region whose size is less than SHMMIN or larger
than SHMMAX, the system call will fail

10.7.2 The UNIX APIs for Shared Memory

The <sys/ipc.h> header defines a struct ipc_perm data type, which stores the owner
user and group ID, creator user and group ID, assigned name key, and read-write permission

of shared memory.

Each entry in the shared memory table is of type struct shmid_ds, which is defined in
the <sys/shm.h> header. The data fields of the structure and the corresponding data it stores

arc:

Data field
shm_perm
shm_segsz
'shm_Ipid

shm_cpid
shm_nattch

shm_atime
shm_dtime

shm_ctime

Data Stored

Data stored in a struct ipc_perm record

The shared memory region size, in number of bytes
Process ID of the last process that attaches to the
region

Creator process ID

Number of processes currently attached to the
region

Time when the last process attached to the region
Time when the last process detached from the
region

Time when the last process changed control data of
the region

The UNIX System V shared memory APIs are:

Shared memory API

shmget
shmat

Uses
Open and create a shared memory
Attach a shared memory to a process virtual

337

Chap. 10. UNIX System V Shared Memory

address space, so that the process can read and/or
write data in the shared memory

shmdt Detach a shared memory from the process virtual
address space
shmctl Query or change control data of a shared memon

or delete the memory
The header files nceded for the shared memory APIs are:
#include <sys/types.h>

#include <sys/ipc.h>
#include <sys/shm.h>

10.7.3 shmget

The function prototype of the shmget API is:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key_t key, int size, int flag);

This function “opens” a shared memory whose key ID is given in the key argument.
The function returns a nonnegative integer descriptor that can be used in other shared mem-
ory APIs.

If the value of the key argument is a positive integer, the API attempts to open a shared
memory whose key ID matches that value. However, if the key value is the manifested con-
stant [PC_PRIVATE, the API allocates a new shared memory to be used exclusively by the
calling process. Specifically, the “private” shared memory is usually allocated by a parent
process, which then forks one or more child processes. The parent and child processes then
use the shared memory to exchange data.

The size argument defines the size of the shared memory region that may be at‘tached to
the calling process via the shmat API. If this function call creates a new shared memory, its
size will be defined by the size argument. However, if this call “opens” a preexisting shared
memory, the size argument may be less than or equal to the allocated size of the shared mem-
ory. In the latter case, if size is less than the actual size of the shared memory, the calling pro-
cess can access only the first size bytes of the shared memory.

338

Chap. 10. UNIX System V Shared Memory

If the flag argument is zero, the API fails if there is no shared memory whose key ID
matches the given key value. Otherwise, it returns the descriptor for that set. If a process
wishes to create a new shared memory with the given key ID (if none preexists), then the flag
value should be the bitwise-OR of the manifested constant [PC_CREAT and the read-write
access permission for the new memory.

This function returns a positive descriptor if it succeeds or -1 if it fails.

10.7.4 shmat

The function prototype of the shmat APl is:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

void * shmat (int shmid, void* addr, int flag);

This function attaches a shared memory referenced by shmid to the calling process vir-
tuai address space. The process ¢an then read/write data.in that shared memory. Note that if
this is a newly created shared memory, the kernel does not actually allocate the memory
region until the first process calls this function to attach to it.

The addr argument specifies the desired starting yirtual address in the calling process to
which location the shared memory should be mapped. If this value is 0, the kernel is free to
find an appropriate virtual address in the calling process to map to the shared memory. Most
applications should set the addr value to zero, unless they explicitly store pointer or address
references in the shared memory (e.g., keeping a linked list in the region). It becomes impor-
tant for every process attached to the shared memory to specify the same virtual address
(mapped to the shared memory).

The flag argument may contain the flag SHM_RND if the addr value is nonzero. The
SHM_RND flag instructs the kernel that the virtual address specified in the addr argument
may be rounded off to align with the page boundary. If the SHM_RND flag is not specified
and the addr argument is not zero, the API fails (if the kernel cannot map the shared memory
to the specified virtual address).

Another possible value of the flag argument is SHM_RDONLY, which means the call-
ing process attaches to the shared memory for read-only. If this flag is not set, then by default
the process may read and write data in the shared memory -- subject to permissions estab-
lished by the creator of the shared memory region '

339

Chap. 10. UNIX System V Shared Memory
The return value of this API is the mapped virtual address of the shared memory or -1 if

it fails. Note that a process may call shmat multiple times to attach shared memory to multi-
ple virtual addresses.

10.7.5 shmdt

The function prototype of the shmdt API is:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmdt (void* addr);

This function detaches (or unmaps) shared memory from the specified addr virtual
address of the calling process.

The addr value should be obtained from a shmat call prior to this function call.
The return value of the function is 0 if it succeeds or -1 if it fails.

The following test_shm.C program “opens” a shared memory with a size of 1024 bytes
and the key ID value of 100. If the shared memory does not preexist, it is created by the
shmget call, and its access permission is read-write for everyone.

After the shared memory is “opened,” it is attached to the process virtual address via
the shmat call. It then writes the message Hello to the beginning region of the memory and
detaches from the memory. Any other process on the same system can now attach to that
shared memory and read the message accordingly.

#include <iostream.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int main()

{
int perms = S_IRWXU | S_IRWXG | S_IRWXO;

Chap. 10. UNIX System V Shared Memory

int fd = shmget (100, 1024, IPC_CREAT | perms);
if (fd==-1) perror(“shmget”), exit(1);

char* addr = (char*)shmat(fd, 0, 0);

if (addr==(char*)-1) perror(“shmat”), exit(1);
strcpy(addr, “Hello”);

if (shmdt(addr)==-1) perror(“shmdt”);

return O;

10.7.6 shmctl

The function prototype of the shmctl APl is:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (int shmid, int cmd, struct shmid_ds* buf);

This API can either query or change the control data of a shared memory designated by
shmid, or delete the memory altogether.

The shmid value is the shared memory descriptor obtained from a shmget function call.

The buf argument is the address of a struct shmid_ds-type object that may be used to
specify or retrieve the control data of a shared memory, as determined by the cmd argument.
The possible values of cmd and their meanings are:

cmd value Meaning

IPC_STAT Copy control data of the shared memory to the
object pointed to by buf. The calling process must
have read permission to the set

IPC_SET Change the control dawa of the shared memory by
the data specified in the object pointed to by buf.
The calling process must be the superuser, creator,
or assigned owner of the shared memory to be able
to perform this task. Furthermore, this API can set
only the region’s owner user and group IDs and
access permission

IPC_RMID Remove the shared memory from the system. The
calling process must be the superuser, creator, or

341

- Chap. 10.

SHM_LOCK

SHM_UNLOCK

UNIX System V Shared Memory

assigned owner of the region to be able to perform
this task. Note that if a shared memory to be
removed has one or more processes attached to it,
the removal operation will be delayed until these
processes detach from it

Lock the shared memory in memory. The calling
process must have superuser privileges to perform
this task
Unlock the shared memory in memory. The calling
process must have superuser privileges to perform
this task

The function returns 0 if it succeeds or -1 if it fails.

The following test_shm2.C program “opens” a shared memory with the key ID of 100

and calls shmctl to retrieve the control data of the region. If both the shmget and shmc:l calls
are successful, the process prints to the standard output the size of the shared memory. It then
sets the shared memory owner user ID as its owner user ID via another shmctl call. Finally,
the process invokes shmctl again 40 remove the shared memory.

342

#include <iostream.h>

#include <stdio.h>
#include <unistd.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int main()

{

struct shmid_ds sbuf;

int fd = shmget (100, 1024, 0);

if (fd>0 && shmctl(fd, IPC_STAT,&sbuf)) {
cout << “shared memory size if: “ << sbuf.shm_segsz << endl;
sbuf.shm_perm.uid = getuid(); // change owner user ID
if (shmeti(fd,IPC_SET,&sbuf)==-1) perror(“shmct!”);

}

else perror(“shmctl”);

if (shmctl(fd,IPC_RMID,0)) perror(“shmcti - IPC_RMID");

return O;

Chap. 10. UNIX System V Shared Memory

10.7.7 Semaphore and Shared Memory Example

This section depicts another version of the client/server application shown in Section
10.3.7. This new version uses semaphores and shared memory to implement the message
queue instead of using messages. Thus, the message.h header needs to be changed signifi-
cantly. However, the message class interface to the client and server programs, as well as the
client.C and server.C modules, are exactly the same as those in Section 10.3.7. This is the
benefit of C++ classes -- as long as the external interfaces of a class are unchanged, no appli-
cations that make use of that class need be modified, even if the internal implementation of
the class has changed dramatically.

To implement a message queue using semaphores and shared memory, the shared
memory provides a kernel memory region to store any messages sent to the queue. The sema-
phores control which process can access the shared memory (to read or write a message) at
any one time. Specifically, there may be multiple client processes sending requests to the
server process simultaneously, using the same semop system calls to manipulate the sema-
phores. The design of these semop calls must ensure that either they are all blocked while the
server is actively accessing the shared memory or only one of the client processes is actively
accessing the shared memory (all the other client processes and the server process are
blocked). To meet these objective, two semaphores will be used. The assignment of these
semaphore values, for various purposes, are:

Semaphore 0 Semaphore 1 Usage

0 1 Server is waiting for a client to send message
1 0 Client's message is ready for server to read

1 1 Server's response data are ready for a client

The interaction of client processes and the server process to the semaphore set is:

« The server initially creates the semaphore set and a shared memory. It initializes the
semaphore set value to be 0, 1 (i.e., the first semaphore value is zero and the second
semaphore’s value is one)

« The server waits for a client to send a request to the shared memory by performing a
semop call on the semaphore set with the supplied values of -1, 0. This blocks the
server, as the current value of the set is 0,1 and none of the semaphores in the set can
be changed by the semop call

« When one or more clients attempt to send a message to the shared memory, they all
perform a semop call with the supplied values 0,-1. One of them will succeed, as the
set value is 0,1 at that moment. However, as soon as a client process succeeds in its
semop call, it immediately changes values to 0,0. This blocks all other clients that
are performing the semop call of 0, -1 and continues blocking the server performing
the semop call of -1,0

« The client process that succeeds in changing the semaphore set value can now write

343

Chap. 10. UNIX System V Shared Memory

a service request command and its PID to the shared memory. After it is done, it will
perform a semop call with the value of 1,0. This unblocks the server process from its
semop call, but the new value continues to block other client processes that are
doing the semop call of 0,-1. If the service request command is not QUIT_CMD, the
client process will perform semop call with the values of -1,-1 and block the client

* Once the server is unblocked it will read the client service request from the shared
memory. If the command is QUIT_CMD, it will deallocate the shared memory and
semaphore set, then terminate itself. However, if the command is not QUIT_CMD,
the server writes the response data to the shared memory, then performs the semop
call with the values of 1,1. This will unblock the client process that is performing the
semop call of -1,-1. Other client processes which are performing the semop call of
0.-1 are still blocked by the new semaphore values. After the semop call, the server
will go back to the state of (b) (to wait for a service request from a new client)

* The client that is unblocked by the server sets the semaphore set value to 0,0 and
reads the server’s response data. It prints the data to the standard output and then
sets the semaphore values to 0,1 before it terminates itself. The last semop call sets
the system back to the state of (c) above, and one of the clients will be unblocked
and start interacting with the server via the shared memory and semaphores

The semaphore value transition, in the different stages of a client/server interaction, is
shown in Figure 10.6 (the semaphore values are shown inside the ovals):

server is ready for a client to send message

client’s semop(0,1 client’s semop (0, -1)

client reads client writes a message

response

client’s semop (1,0)

client can read
response

)

erver’s semop (-1,0)

server reads message and writes response

Figure 10.6 Client/Server interaction using semaphores/shared memory

The message.h header déscribed in Section 10.3.7 is modified to use shared memory
and semaphores instead of the message queue. The new message class is declared in the fol-
lowing message3.h header:

Chap. 10.

#ifndef MESSAGE3_H
#define MESSAGE3_H
#include <strstream.h>
#include <stdio.h>
#include <stdlib.h>
#include <memory.h>
#include <unistd.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/sem.h>
#include <sys/wait.h>
#include <sys/errno.h>

UNIX System V Shared Memory

/* common declarations for daemon/server process */

enum { MSGKEY=186, MAX_LEN=256, SHMSIZE=1024, SEMSIZE=2 },

enum { LOCAL_TIME =1, UTC_TIME = 2, QUIT_CMD = 3,
ILLEGAL_CMD =4, SEM_RD =0, SEM_WR=1};

struct mgbuf

{
long mtype;

char mtextiMAX_LEN];

|5

class message

{

private:

int shmid, semid;

struct mgbuf *msgPtr;

enum ipc_op { RESET_SEM, CLIENT_GET_MEM,
CLIENT_SND_REQ, SERVER_RCV_REQ,
SERVER_GET_MEM, SERVER_SND_RPY,

CLIENT_RCV_RPY

public:

/* try to change semaphores’ values */
void getsem(enum ipc_op opType)

{

static struct sembuf args[2] = { {SEM_RD}, {SEM_WR} };

switch (opType)

case SERVER_GET_MEM:

return;

case CLIENT_GET_MEM:
args[SEM_RD].sem_op =0,
args[SEM_WR].sem_op =-1;

{

345

Chap. 10. UNIX System V Shared Memory

break;

case CLIENT_SND_REQ:
args[SEM_RD].sem_op =1,
args[SEM_WR].sem_op = 0;
break;

case SERVER_RCV_REQ:
args[SEM_RD].sem_op = -1,
args[SEM_WR].sem_op = 0;
break;

case SERVER SND_RPY:
args[SEM_RD].sem_op =1,
args[SEM_WR].sem_op = 1;
break;

case CLIENT_RCV_RPY:
args[SEM_RD].sem_op = -1,
args[SEM_WR].sem_op = -1;
break;

case RESET_SEM:
args[SEM_RD].sem_op = 0,
args[SEM_WR].sem_op = 1;

}
if (semop(semld,args, SEMSIZE)==-1) perror(“semop”);
k

/* constructor function */
message(int key)

if ((shmld=shmget(key, SHMSIZE, 0))==-1) {
if (errno==ENOENT) { // create a brand new message object
if ((shmld= shmget(key, SHMSIZE, IPC_CREATI0666)) ==-1)
perror(“shmget”);
else if ((semld=semget(key, SEMSIZE, IPC_CREATI0666))
==-1)
perror(*semget”);
else getsem(RESET_SEM); // initialize a new semaphore set
}
else perror(“shmget”);
}
else if ((semld=semget(key,0,0))==-1) /* get existing semaphores */
perror(“semget”);

if (shmid>=0 && !(msgPtr=(struct mgbuf*)shmat(shmid,0,0)))
perror(“shmat”);

346

Chap. 10.

/* destructor function */
~message() {};

/* check message queue open status */

int good() { return (shmid >=0 && semld>=0)?1:0; };

/* remove message queue */
int rmQ()

if (shmdt((char*)msgPtr)<O) perror(“semdt’);

UNIX System V Shared Memory

if (!semctl(sem|d,O,IPC_RMlD,O) && 'shmcti(shmid,iPC_RMID,0))

return O;
perror(“shmctl or semctl”);
return -1,

%

/* send a message */
int send(const void* buf, int size, int type)

{ .
int server = (type > 99);

getsem(server ? SERVER_GET_MEM:C

memcpy(msgPtr->mtex1,buf,size);
msgPtr->mtext[size] =10";
msgPtr->mtype = type,

getsem(server ? SERVER_SND_RPY : CLIENT_SND_REQ);

return O;

|

/* receive a message */
int rev(void® buf, int size, int type, int* rtype)

{
int server = (type < 0);
getsem(server ? SERVER_RCV_REQ : CLIENT_RCV_RPY);
memcpy(buf,msgPtr->mtext,strlen(msgPtr—>mtext)+1);
if (rtype) *rtype = msgPtr->mtype,
if (Iserver) getsem(RESET_SEM);
return strien(msgPtr->mtext);
2

};, /* message */

#endif

LIENT_GET_MEM);

2 the new message.h header, getsem is a utility function that performs semop on a
semaphore set based on the actual opType argument values (as assigned by either a server ora

client process).

347

Chap. 10. UNIX System V Shared Memory

The message constructor function “opens” a shared memory and semaphore set with
two elements. These two objects have the same key ID. If the semaphore set is a brand new
object, it will be initialized to the initial values of 0, 1. This signifies that the first semaphore
value is zero and the second semaphore value is 1.

The send function “sends” a message to the shared memory. Because the semop opera-
tions is different between a server and a client process, the function uses the fype argument
value to identify whether the calling process is a server or a client. If the rype argument value
is greater than 99, the function is called by a client process. Otherwise, it is called by a server
process. The function blocks the getsem call until the process can complete its semop opera-
tion. After that it writes a message to the shared memory and calls gefsem again to set sema-
phore values that unblock its counterpart process.

The read function works similarly: The semop operations which read a message from
the shared memory are different between a server and a client process. Thus, it uses the type
argument value to identify the calling process: If the fype argument value is less than zero
(actual is -99), the caller is a server process (otherwise, it is a clieat process). The function
blocks the getsem call until the process can complete its semop operation. After that it reads a
message from the shared memory and resets the semaphores to the initial values 0,1 (if the
process is a client).

The rmQ function is called when a server process receives the QUIT_CMD from a cli-
ent process. The function invokes the semctl and shmetl APIs to delete the semaphore set and
the shared memory, respectively then to terminate the server process. This is necessary as
semaphores and shared memory are persistent objects in kernel space, even after those pro-
cesses that created them are terminated.

The output of the new server and client processes using the new message.h is similar to
the one using messages, as seen in Section 10.3.7:

ch13 % mserver &

[1] 337

ch13 % server: start executing...
¢h13 % mclient

client: start executing...

cmd> 1

server: receive cmd #1, from client: 338
client: 338 Thu Jan 26 21:50:59 1995
cmd> 2

server: receive cmd #2, from client: 338
client: 338 FriJan 27 05:51:01 1995
cmd> 4

348

Chap. 10. ' Memory Mapped /O

server: receive cmd #4, from client: 338
client: 338 Illegal cmd: 4

cmd> 3

client: 338 exiting...

server: receive cmd #3, from client: 338
server: deleting msg queue...

[1] Done mserver

10.8 Memory Mapped /O

Mmap is a creation of BSD UNIX. It allows a process to map its virtual address space
directly to a file object memory page in a kernel space. The process can read and write data
with the file object directly via the mapped memory. Furthermore, if more than one process
maps to the same file object simultaneously, they share a mapped memory region. They can
communicate with each other in a manner similar to that of using a shared memory.

Mmap differs from the regular UNIX file APIs in that after a file is opened for access (a
process calls read to read data from the file), the kernel fetches one or more pages of the
requested data from the file’s hard disk storage. The data is then put into a kernel memory
region and then copied into a buffer in the calling process’s virtual address. The reverse situa-
tion applies to the write API: when a process calls write to write data to a file, the kernel cop-
ies the data from the process buffer into a kernel memory region. When the memory region is
filled or the process requests to flush the buffer, the data are copied to the file’s hard disk.

However, if the same process uses mmap instead, the kernel still fetches one or more
pages of tile data from its hard disk storage and puts them into a kernel memory region. In
this case the process can directly access data in the memory region by referencing the virtual
addresses mapped to the region. Thus, mmap is more efficient in manipulating file data. Any
data written to a mapped region are stored in its corresponding file object automatically.

One application ot mmap is to develop programs that can resume execution after being
previously terminated. For example, a database management program can use mmap to map
its virtual address to a database file, and all the data it manipulates are stored in the mapped
region. When the process is terminated, the data are stored in the database file automatically.
When its program is executed again, the new process maps to the database file and all previ-
ously written data are readily available for further use.

Another use of mmap is to emulate the shared memory function. Specifically, two or
more processes that wish to perform interprocess communication can use mmap to map to the
same file object. They can then read and write data to each other via their mapped virtual
addresses. A later section will show how to use mmap to reimplement the client/server appli-
cation, as depicted in the previous section.

349

Chap. 10.

Memory Mapped I/0

10.8.1 Memory mapped /O APIs

The <sys/mman.h> header declares all the mmap APIs:

API
mmap

munmap

msync

10.8.2 mmap

Meaning

Maps a process virtual address space to a file
object

Disassociates a process virtual address from a file
object ‘

Synchronizes mapped memory region data with its
corresponding file object data on a hard disk.

The function prototype of the mmap API is:

#include <sys/types.h>
#include <sys/mman.h>

caddr_t mmap (caddr_t addr, int size, int prot, int flags, int fd, off_t pos);

350

This function maps a file object designated by fd to the virtual address of a process
starting at addr. If the addr value is zero, the kernel assigns a virtual address to map. The pos
argument specifies the starting location in the file object that is mapped to addr. Its value
should be either zero or a multiple of the memory page size (use the getpagesize or sysconf
APT to get the system memory page size value). The prot argument specifies the access per-
mission of the mapped memory. Its possible values and meanings are:

prot value
PROT_READ
PROT_WRITE
PROT_EXEC

Meaning

The mapped region can be read
The mapped region can be written
The mapped region can be executed

The flags argument specifies mapping options. Its possible values and meanings are:

flags value
MAP_SHARED

Meaning
Data written to the mapped region are visible to

other processes that are mapped to the same file
object

Chap. 10. Memory Mapped /O

MAP_PRIVATE Data written to the mapped region are not visible to
other processes that are mapped to the same file
object

MAP_FIXED The addr value must be the starting virtual address

of the mapped region. The function fails if this
cannot be accomplished. If this flag is not specified
or if the MAP_VARIABLE flag is defined and
specified by a system, the kernel can select a dif-
ferent virtual address than addr for the mapped
region

The return value of the function is the actual virtual address where the mapped region
starts or MAP_FAILED if the function fails.

The PROT_EXEC flag is used when the file object to be mapped is an executable file
and the calling process has the superuser privilege. When a user invokes a command in a
UNIX system, it is common for the kernel to perform a mmap of the command’s executable
file. This executes the instruction code of the program directly from the file’s mapped mem-

ory.

The MAP_PRIVATE flag specifies that any data written to a mapped memory are not
visible to other processes mapped to the same file object. However, this also disables written
data in the mapped memory from being stored back into the object’s disk file. Furthermore,
suppose processes A and B both map to a file called FOO; process A specifies
MAP_PRIVATE and B specifies MAP_SHARED. If process B writes data to the mapped
memory before A does, the new data are seen by both processes. However, once A writes data
to the shared memory, the kernel creates a private copy of the memory pages that A has mod-
ified, while B is still using the old page. From that point onward, any data written by A or B to
their respective memory pages are not visible to each other.

MAP_PRIVATE is used by a debugger process to mmap a program for execution. The
debugger often writes user-defined breakpoints to the instruction code of the debugged pro-
cess. Those breakpoints should not be reflected in the executable file of the debugged pro-
gram, nor should they be seen by other processes that are also mapping the same program.

Before a process can call mmap to map a file object, it must call the open API and
assign the file descriptor to the fd argument. Furthermore, if the file object is newly created by
the open call, the process should write at least size bytes of data to initialize the file. This is
done because mmap does not allocate any memory region. It simply marks that the process’s
virtual address (from addr to addr+size) is legal to use. If the file size is less than that, there
is no memory allocated by the kemel beyond the memory page that contains the virtual
address addr+<file_size>. If the process attempts to access data anywhere between
addr+<file_size> and addr+size, it may receive a SIGBUS signal.

351

Chap. 10 Memory Mapped i/0O

The following test_mmap.C program “opens” a new file called FOO and initializes its
size to SHMSIZE byte (with the data of *“\0"). It then closes the file descriptor fd, as it is no
longer needed. Finally, the process writes the string Hello to the mapped region and then ter-
minates itself. If a user looks at the content of the file via the car command, he or she would
notice that the file contains the string Hello.

#include <strstream.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/mman.h>
const int SHMSIZE = 1024;

int main()
{
int ch="\0", fd = open (“FOO", O_CREAT | O_EXCL,0666);
if (fd==-1) {
perror(“file exists”), exit(1);
%
for (int i=0; i < SHMSIZE; i++) /* Initialize the file */
write(fd, &ch, 1);
caddr_t memP=mmap(0,SHMSIZE,PROT_READIPROT_WRITE,
MAP_SHARED, fd, 0);
if (memP==MAP_FAILED) {
perror(*"mmap”);

exit(2);
}
close(fd); /* don’t need this anymore */
ostrstream(memP, SHMSIZE) << “Hello UNIX\n";

10.8.3 munmap

The function prototype of the munmap API is:

352

Chap. 10. Memory Mapped I/0

#include <sys/types.h>
#include <sys/mmap h>

int munmap (caddr_t addr, int size);

This function disassociates a mapped region from the process virtual address. The un-
mapped region starts at the addr virtual address and extends up to the memory page that con-
tains the addr+size virtual address.

The function returns 0 if it succeeds or -1 if it fails.

10.8.4 msync

The function prototype of the msvnc APl is:

#include <sys/types.h>
#include <sys/mmap.h>

int msync (caddr_t addr, int size, int flags)

This function synchronizes data in a mapped region with its corresponding file object
data on the hard disk. If size is 0, all modified pages in the region that contain addr are syn-
chronized. If size is greater than 0. only the pages containing addr to addr+size are synchro-
nized.

The flags argument specifies the synchronization method. Its possible values and mean-
ings are:

flags value Meaning

MS_SYNC Flush data from mapped region to hard disk. Wait
for data transfer to complete

MS_ASYNC Flush data from mapped region to hard disk. Do
not wait for the data transfer to complete

MS_INVALIDATE Invalidate the data in the mapped region. Next ref-

erence to the region will cause new pages to be
fetched from the hard disk.

The function returns O if it succeeds or -1 if it fails.

353

Chap. 10. Memory Mapped I/0

10.8.5 Client/Server Program Using Mmap

The client/server example, as depicted in Section 10.7.7, can be changed easily to use
mmap instead of shared memory. Once again, the only changes required are in the message.h
header. The client.C and server.C modules are unchanged, as shown in Section 10.3.7.

The new message4.h header which uses semaphores and mmap is as follows:

#ifrdef MESSAGE4_H
#define MESSAGE4_H

#include <strstream.h>
#include <stdio.h>
#include <stdiib.h>
#include <string.h>
#include <fcntl.h>
#include <memory.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/ipc.h> :
#include <sys/mman.h>
#include <sys/sem.h>
#include <sys/wait.h>
#include <sys/errno.h>
/* common declarations for daemon/server process */
enum { MSGKEY=186, MAX_LEN=256, SHMSIZE=1024, SEMSIZE=2 };
enum { LOCAL_TIME =1 UTC TIME =2, QUIT_CMD =3,
ILLEGAL_CMD =4, SEM_RD = 0, SEM_WR=1};

struct mgbuf
{

long mtype;

char mtexttMAX_LEN]J;
¥

class message
{
private:
int semid;
struct mgbuf *msgPtr;
enum ipc_op { RESET_SEM, CLIENT_GET_MEM.
CLIENT_SND_REQ, SERVER_RCV_REQ,
SERVER_GET_MEM, SERVER_SND_RPY,
CLIENT_RCV_RPY };
public:

Chap. 10. Memory Mapped I/O

/* try to change semaphores’ values */
void getsem(enum ipc_op opType)
{
static struct sembuf args[2] = { {SEM_RD}, {SEM_WR} };
switch (opType) {
case SERVER_GET_MEM:
return;
case CLIENT_GET_MEM:
args[SEM_RD].sem_op =0,
args[SEM_WR].sem_op = -1;
break;
case CLIENT_SND_REQ:
args[SEM_RD].sem_op =1,
args[SEM_WR].sem_op = 0;
break;
case SERVER_RCV_REQ:
args[SEM_RD].sem_op = -1,
args[SEM_WR].sem_op = 0;
break;
case SERVER_SND_RPY:
args{SEM_RD].sem_op =1,
args[SEM_WR].sem_op = 1;
break;
case CLIENT_RCV_RPY:
args[SEM_RD].sem_op = -1,
args[SEM_WR].sem_op = -1;
break;
case RESET_SEM:
args[SEM_RD].sem_op =0,
args[SEM_WR].sem_op = 1;

}
if (semop(semid,args,SEMSIZE)==-1) perror(“semop”);
h

/* constructor function */
message(int key)
{
char mfile[256), fillchr="\0";
ostrstream(mfile.sizeof mfile) << “FOO" << key <<\0’;
int fd =open(mfile, O_RDWR,0);
if (fd==-1) { /* a new file */
if ((fd=open(mfile, 0O_RDWRIO_CREATIO_TRU NC,0777))==-1)
perror(“open”);
else {

355

Chap. 10.

b

Memory Mapped 1/0

* zero fill the file for mmap to work.
This is system dependent */

for (int i=0; i < SHMSIZE; i++) write(fd, &filichr, 1);

if ((semld=semget(key, SEMSIZE, IPC_CREATI0666))==-1)
perror(“semget”);

else getsem(RESET_SEM); // initialize a new semaphore set

}
}

else { /* connect to an existing entry */
if ((semld=semget(key, 0, 0))==-1) perror(“semget");
if ((msgPtr=(struct mgbuf*)mmap(0, SHMSIZE, PROT_READ |
PROT_WRITE, MAP_SHARED, fd,0))== MAPQFAILED)
perror(“mmap”);
else close(fd);

}

/* destructor function */
~message() {};

/* check message queue creation status */
int good() { return (semid>=0) ? 1:0; }

/* remove message queue */
int rmQ()

{

b

if ('semcti(semld,0,IPC_RMID,0) &&
'munmap((caddr_t)msgPtr, SHMSIZE))
return 0;

perror(“shmctl or semctl”);
return -1;

/* send a message */
int send(const void* buf, int size, int type)

{

int server = (type > 99);

getsem(server ? SERVER_GET_MEM : CLIENT_GET_MEM);
memcpy(msgPtr->mtext,buf,size);

msgPtr->mtext{size] = \0’;

msgPtr->mtype = type;

getsem(server ? SERVER_SND_RPY : CLIENT_SND_REQ);

Chap. 10. POSIX.1b Shared Memory

return O;
b

/* receive a message */
int rev(void* buf, int size, int type, int* rtype)
{
int server = (type < 0);
getsem(server ? SERVER_RCV_REQ: CLIENT_RCV_RPY),
memcpy(buf, msgPtr->mtext,strlen(msgPtr->mtext)+1);
if (rtype) *rtype = msgPtr->mtype;
if (\server) getsem(RESET_SEM);
return strien(msgPtr->mtext);
X
}; /* message */
#endif /* MESSAGE4_H */

The changes in the new message.h header are in the message constructor, where the
mmap call replaces the shmget call. The map file name is constructed with a file name prefix
of FOO (this is chosen arbitrarily) and followed by the given key ID. Note that if the file is
newly created, it is initialized with SHMSIZE bytes of NULL characters. This is to ensure
that the entire mapped memory region is allocated by the kernel to hold valid data.

Another change in the message.h header is in the rmQ function. This function is called
when a server process is terminating and needs to delete its semaphore set and detach from
the mapped memory.

The rest of the message.h code is the same as that in Section 10.7.7. The output of the
new client/server program is similar to that in Section 10.7.7 also.

10.9 POSIX.1b Shared Memory

The POSIX.1b shared memory APIs are:

#include <sys/mman.h>

int shm_open(char* name, int flags, mode_t mode);
int shm _unlink (char* name),

The shm_open function creates a shared memory region whose name is given by the
name argument. The syntax of the name argument value is the same as that for POSIX.1b
messages. The flags argument contains the memory access flags (O_RDWR, O_RDONLY, or
O_WRONLY) and any O_CREAT and O_EXCL flags. The mode argument is used if a new
shared memory is created by this call. Its value is the read-write access permission (for user,

357

Chap. 10. POSIX.1b Shared Memory
group, and others) assigned to the new shared memory.

The function returns a -1 if it fails, or a nonnegative handle if it succeeds.

Note that unlike the System V shmget API, the shm_open API does not specify the size
of the shared memory region, which is defined.in a subsequent frruncate call. The ftruncate
function prototype is:

int JStruncate (int fd, off_t shared_memory_size);

where the fd argument value is a shared memory handle, as returned by a shm_open
call. The shared_memory_size argument contains the size of the shared memory region to be
allocated. Once a shared memory is allocated and its size defined, the mmap function should
be called. This maps the shared memory region to the virtual address space of the calling pro-
cess.

After a process finishes using a shared memory, it calls the munmap function to unmap
the shared memory from its virtual address space. Then the shm_unlink function may be
called to remove the shared memory from the system. The argument to the shm_unlink func-
tion is a UNIX path name for a shared memory region.

The following test_shmp.C program “opens” a read-write-accessible shared memory
with the name /shm.0, via the shm_open call and sets its size with the frruncate function call.
The shared memory is mapped to the process’s virtual address space via the mmap call. The
memp variable holds the starting address of the shared memory.

Once the shared memory is set up in the process, the sem_init function is called to cre-
ate a semaphore at the beginning address of the shared memory. The process works with the
semaphore and shared memory. After the process is done, it calls the sem_destroy function to
remove the semaphore from the system. It finally calls the shm_unlink and shm_unmap func-
tions to remove the shared memory from the system and to unmap the shared memory from
the virtual address.

#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <sys/stat.h>
#include <semaphore.h>
#include <sys/mman.h>

358

Chap. 10.

10.9.1

POSIX.1b Shared Memory

int main()

long siz = sizeof(sem_t) + 1024,
int shmfd = shm_open (*/shm.0”, O_CREATIO_RDWR, S_IRWXU),

if (shmfd==-1) { perror(“shm_open”); return 1; }
if (ftruncate(shmfd, siz)==-1)
{ perror(“ftruncate”); return 2; }

char* memp = (char*)ymmap(0, siz, PROT_READ IPROT_WRITE,
MAP_SHARED, shmfd, OL);
if ({imemp) { perror(*mmap”); return 3; }

(void)close({shmfd);

if (sem_init((sem_t*)memp,1,1) < 0) { perror(“sem_init"); return 4; }

/* do work with the shared memory and semaphore */

if (sem_destroy((sem_t*)memp) < 0) { perror(“sem_destroy”); return 5; }
if (shm_unlink(*/shm.0") < 0) { perror(*shm_unlink”); return 6; }

return shm_unmap(memp, sizeof(sem_t) + 1024);

POSIX.1b Shared Memory and Semaphore
Example

The clientserver example depicted in Section 10.7.7 is rewritten using POSIX.1b
shared memory and semaphore. Once again, the only changes required are in the message.h
header. The client.C and server.C modules are unchanged, as shown in Section 10.3.7.

The new messag5.h header that contains a message class based on POSIX.1b shared
memory and semaphore is:

#ifndef MESSAGES_H
#define MESSAGES_H

/* specify the following source code is POSIX.1b compliant */
#define _POSIX_C_SOURCE 199309L

#include <strstream.h>

#include <stdio.h>

389

Chap. 10. POSIX.1b Shared Memory

#include <memory.h>
#include <unistd.h>
#include <string.h>
#include <limits.h>
#include <sys/stat.h>
#include <semaphore.h>
#include <sys/mman.h>

/* common declarations for daemon/server process */
enum { MSGKEY=186, MAX_LEN=256, MAX_MSG=20 };
enum { LOCAL_TIME=1, UTC_TIME=2, QUIT_CMD=3
, ILLEGAL_CMD=4 };
/* data record for one message */
struct mgbuf
{
long mtype,; // msg type
char mtext(MAX_LEN]J; // msg text
I8

/* data record for one shared memory region */

struct shm_header

{
sem_t semaphore; // semaphore
struct mgbuf msgList{MAX_MSG]; // msg. list

|3

/* message class */
class message

{
private:
struct shm_header *memptr;
sem_t *sem_id;
char mfile[256]; ‘
enum ipc_op { GET_MEM, SND_RPY, RCV_REQ, RESET_SEM };
public:

/* constructor function */
message(int key)

{

/* create a shared memory region */

Chap. 10. POSIX.1b Shared Memory

ostrstream(mfile,sizeof mfile) << “FOO” << key << \0;

int fd = shm_open(mfile, O_CREATIO_RDWR,
S_IRWXUIS_IRWXGIS_IRWXO);

if (fd==-1) { perror(“shm_open”); return; }

(void)ftruncate(fd,sizeof(struct shm_header));

/* map shared memory to a process address space */
if ((memptr=(struct shm_header*)mmap(0,
sizeof(struct shm_header),
PROT_READ | PROT_WRITE, MAP_SHARED, fd. 0))
== MAP_FAILED) {
perror(“mmap”);
return,

}
close(fd);

/* create a semaphore in the shared memory region */
sem_id = (sem_t*)&memptr->semaphore;
if ((sem_init(sem_id, 1, 1))==-1) perror(“sem_init"),

/* initialize msg list to be empty */
for (int i=0; i < MAX_MSG; i++)
memptr->msgList(i]. mtype = INT_MIN;
I8

/* destructor function: unmap shared memory from process */
~message() { munmap(memptr, sizeof(struct shm_headen): };

/* check share memory creation status */
int good() { return (memptr) ? 1:0; Y

/* remove shared memory and semaphore */

int rmQ()

{
if (sem_destroy(sem_id)==-1) perror(“sem_destroy”);
if (shm_unlink(mfile)==-1) perror(“shm_unlink”);
return munmap(memptr, sizeof(struct shm_header));

|3

361

Chap. 10. POSIX.1b Shared Memory

/* try to change semaphore’s value */
void getsem(enum ipc_op opType)
{
switch (opType) {
case GET_MEM:
case RCV_REQ:
if (sem_wait(sem_id)==-1) perror(“sem_wait");
break;
case SND_RPY:
case RESET_SEM:
if (sem_post(sem_id)==-1) perror(“sem_post”);
break;
}

}; /" getsem */

/* send a message to message queue*/
int send(const void* buf, int size, int type)

{
getsem(GET_MEM); // acquire semaphore
for (int i=0; i < MAX_MSG; i++)
it (memptr->msgList[il. mtype==INT_MIN) {
/* find an empty slot in message queue to store msg */
memcpy(memptr->msgList[i].mtext, buf, size);
memptr->msgL.ist[i]. mtext[size] = \0’;
memptr->msgList[i]. mtype = type;
break;
}
if (i >= MAX_MSG) { // msg queue is full
cerr << “Too many messages in the queue\n”;
return -1; // return failure
}
getsem(SND_RPY); Il release semaphore
return O; // return OK
}; /*send*/

/" receive a message */
int rev(void* buf, int size, int type, int* rtype)
{

do {

362

Chap. 10.

POSIX.1b Shared Memory

getsem(RCV_REQ); // acquire semaphore
int lowest_type = -1;
for (int i=0; i < MAX_MSG; i++) {

if (mqmptr->msgList[i].mtype::lNTﬁMIN) continue;

/* done if type==0 or type matches msg. type */
if (type |l type==memptr->msgList(i]. mtype) break;

/* if type < O find the lowest msg type < type */
if (type < 0 && -type >= memptr->msgList[i.mtype)
if (lowest_type==-1 Il (memptr->msgList[i]. mtype <
memptr->msgList{lowest_type].mtype))
lowest_type = i;
}
if (i < MAX_MSG i lowest_type !=-1) { // found one msg
if (lowest_type!=-1) i = lowest_type;
/* copy msg text and type to caller’s variables */
memcpy(buf, memptr->msgList{i]. mtext,
strien(memptr->msgList[i]. mtext)+1);
if (rtype) *rtype = memptr->msgList{i]. mtype;
/* mark queue slot as empty */
memptr->msgList(i]. mtype = INT_MIN;

getsem(RESET_SEM); // release semaphore
return strlen((char*)buf); // return msg. size
1
getsem(RESET_SEM); // release semaphore
sleep(1); // sleep for 1 second
} while(1); // check queue again
Y, Ifrev/

}; /* message */
#endif /* MESSAGES5_H */

The new message class is different from that of Section 10.7.7. This is because the
POSIX.1b semaphores are counting semaphores, and each semaphore value can be changed
by 1 each time. Conversely, System V semaphore values can be altered by any integral value
at a time. With this limitation, the new message class does not support a server and client
engaging in private communication while other client processes are blocked by their semop
call. This results in a new message class whose code is simpler: Each send or receive request
is preceded by a sem_wait call to acquire a shared semaphore. The call is finished by a
sem_post call which releases the acquired semaphore to unblock other processes (server or

363

Chap. 10. POSIX.1b Shared Memory

client) seeking access to the message queue. Furthermore, the message class now more truly
implements System V and POSIX.1b message behavior.

The constructor function of the message class gets an integer key as argument and com-
poses a textual name for the shared memory to be allocated. The shared memory is allocated
via the shm_open call. It is read-write by the process, and the access permission assigned to
user. group, and others is read-write-execute (in case this memory does not exist before the
call.

Once a shared memory is allocated, its size is set to the size of the struct shm_header
via the frruncate call. The struct shm_header defines all the data fields for one shared mem-
ory region ---a shared semaphore variable and a list of message records to store server and cli-
ent messages.

The shared memory region is mapped to the process virtual address space via mmap.
The starting address of the mapped memory is determined by the kernel. After the mmap call,
the file descriptor returned by the shm_open call is closed (it is no longer needed). Next, a
semaphore is created via the sem_open call. The new semaphore is put at the starting address
of the shared memory region designated as accessible by multiple processes, and its initial
value is set to 1.

Finally, the message list is initialized by setting the message type of each message
record in the list to INT_MIN (a large negative number) to indicate that they are unused.

When a message is sent to the message queue via the message::send function, the
semaphore is first acquired via the message::getsem call (which, in turn, calls sem_wait).
After this call, the process has acquired the semaphore and is allowed to access the message
list in the queue. It scans every entry of the message list until it finds the first unused message
record (whose message type is INT_MIN). It stores the message data (message text and type)
in that record. When this is done, the process releases the semaphore via another mes-
sage::getsem call (which, in turn, calls sem_post).

When a process tries to receive a message from the message queue via the mes-
sage::rcv function, the semaphore is first acquired via the message::getsem call (which calls
sem_wait). After this call, the process acquires the semaphore and is allowed to access the
message list in the queue. It scans every entry of the message list until it finds a record whose
type matches the message type specified by the calling process. It copies that record’s mes-
sage text and type to the input arguments of the function and releases the semaphore (via the
message:.:getsem call). Finally, the function returns the message length to the caller. How-
ever, if no message in the queue matches the message type specified by a calling process, the
function releases the semaphore, puts the process to sleep for 1 second, then repeats the entire
message retrieval process. This is to block the calling process until a message arrives at the
queue that satisfies process search criteria.

364

Chap. 10. Summary

The message::rmQ function is called to destroy the shared memory and the semaphore.
This is accomplished by calling sem_destroy to destroy the semaphore. shm_unlink to destroy
the shared memory from the system, and finally, munmap to unmap the shared memory from
the process virtual address space.

The new message.h header can be compiled with the client and server programs as
shown in Section 10.3.7. The output of the new programs should be the same as that depicted
in the Section 10.3.7.

10.10 Summary

This chapter examines UNIX System V.3, V.4, and POSIX.1b interprocess communica-
tion methods: messages, semaphores, shared memory, and mmap. The syntax of these APIs is
explained in detail. Example programs that illustrate their use were also presented. A com-
mon drawback of these IPC methods is that there are no standards defined for their use be in
intermachine communication. The next chapter will ook at the BSD UNIX socket and UNIX
System V.3 and V.4 Transport Level Interface (TLI) interprocess communication methods.
Sockets and TLI can be used by processes running on different machines or on the same
machine to communicate with each other.

365

~

Sockets and TLI

rEe previous chapter examined UNIX System V IPC methods using messages,
shared memory, and semaphores. These methods are useful for processes communicating on
the same machine, but they do not support processes running on different machines to com-
municate. The primary reason for this drawback is that message queues, shared memory
regions and semaphore sefs are identified by integer keys. These are guaranteed to be unique
only on individual machines, not across multiple machines. Thus it is impossible for a pro-
cess running on computer A to reference a message queue on machine B merely by using the
message queue key. POSIX.1b IPC methods eliminate this problem by using textual names
for their messages, semaphores, and shared memory. This standard leaves it up to computer
vendors to define and interpret these names for IPC to work across their machines.

To support IPC over a local area network (LAN), BSD UNIX 4.2 developed sockets
which provide protocol-independent network interface services. Specifically, sockets can run
on either TCP (Transport Connect Protocol) or UDP (User Datagram Protocol). A socket can
be addressed by a host Internet address and a port number. The address is guaranteed to be
unique on the entire Internet, as each machine has an unique address and port number. Thus,
two processes running on separate machines may communicate via sockets

Since the introduction, sockets have been widely used in many network-based applica-
tions. Sockets are now available in BSD UNIX 4.3, 4.4, and even on UNIX System V.4. How-
ever, the implementation of sockets in UNIX System V.4 has some subtle differences from
that of BSD UNIX. They are explained in later sections.

367

Chap. 11. Sockets

Transpoert Level Interface (TLI) was developed in UNIX System V.3. It was System Vs
answer to BSD UNIX sockets. Its use and APls are similar to those of sockets. Furthermore,
since TLI was developed based on STREAMS, it supports most transport protocols and is
more flexible than sockets. TLI is available on both UNIX System V.3 and V4. Moreover,
TLI is called XTI (X/Open Transport Interface) in the X/Open standard.

The following sections examine sockets and TLI APIs and show examples of socket-
based and TLI-based applications. Note that sockets and TLI are not defined in POSIX.

11.1 Sockets

Sockets may be connection-based (1.e., sender and receiver socket addresses are pre-
established before messages are passed between them) or connectionless (sender or receiver
addresses must be passed along with each message sent from one process to another). There
are different socket address formats, depending on the sockets’ assigned domain. A domain
defines the socket address format and the underlying transport protocol to be used. The com-
mon domains assigned to sockets are AF_UNIX (address format is a UNIX path name) and
AF_INET (address format is the host name and port number).

Each socket has an assigned type, which determines the manner in which data is trans-
mitted between two sockets. If a socket type is virtual circuit, data are transmitted sequen-
tially in a reliable fashion and are nonduplicated. If a socket type is datagram, data are
transmitted in a nonsequenced and unreliable fashion. Connection-based socket type is usu-
ally virtual circuit, whereas connectionless socket type is usually datagram. Datagram sock-
ets are generally faster than are virtual circuit sockets and are used in applications where
speed is more important than reliability.

Each socket type supports one or more transport protocols, but there is always a default
protocol specified for each socket type on a given UNIX system. The virtual circuit default
protocol is TCP and the datagram default protocol is UDP.

Sockets that are used to communicate with each other must be of the same type and
belong to the same domain. Furthermore, connection-based sockets communicate in a client/
server manner: A server socket is assigned a “well-known” address and is constantly listening
for client messages to arrive. A client process sends messages to the server via the server
socket’s advertised address. It is not necessary to assign an address to client sockets, as usu-
ally no process sends messages in this manner.

Connectionless sockets, on the other hand, communicate in a peer-to-peer manner:
Each socket is assigned an address, and a process can send messages to other processes via
their socket addresses.

368

Chap. 11.

The socket APIs are:

Socket APIS
socket

bind
listen

accept
connect

send, sendto
recv, recvirom
shutdown

Sockets

Use

Creates a socket of a given domain, type, and pro-
tocol

Assigns a name to a socket

Specifies the number of pending client messages
that can be queued for a server socket.

A sérver socket accepts a connection request from
a client socket

A client socket sends a connection request to a
server socket

Sends a message to a remote socket
Receives a message from a remote socket
Shuts down a socket for read and/or write

The socket APIs’ calling sequences that establish server and client virtual circuit con-

nections are shown in Figure 11.1.

Server socket Client socket
socket socket
bind)
v connect
listen /l_\
accept ; ’ send recv
send recv
l\% shutdown
shutdown close
V
close
Figure 11.1 Socket API calling sequence for server and client sockets

To make sense of the use of these APIs, imagine that a socket is a telephone set. The
socket API is to buy a phone from a shop. The bind API assigns a phone number to the phone.
The listen API asks your phone company to set up a maximum allowance for Call Waiting on

369

Chap. 11. Sockets

your phone. The connect API is to call someone, using your phone. The accept API answers
a phone call. The send API speaks on the phone. The recv API listens to the caller through
your phone. Finally, the shutdown API hangs up your phone after a call is finished. To discard
the “phone,” use the close API on the socket descriptor returned from a socket function call.

One the client’s side, the process calls the socket function to set up a phone. It calls the
connect function to dial a server’s phone and uses the send and recv functions to communi-
cate with the server. Once the conversation is over, it calls the shutdown function to hang up
the phone and the close API to discard the *“phone.”

The calling sequences of socket APIs creating a datagram socket for interprocess com-
munication are shown in Figure 11.2.

socket

i
bind
v

sendto recvfrom

"
v

close

Figure 11.2 Socket API calling sequence to communicate via datagram sockets

The manipulation of datagram sockets is quite simple: A process calls socker to create a
socket, then calls the bind function to assign a name to the socket. After that, the process calls
the sendto function to send messages to other processes, and each message is tagged with the
recipient’s socket address. The process also receives messages from other processes via the
recvfrom function. Each message received is tagged with the sender’s socket address so that
the process can reply via the same address.

Once the process finishes its IPC, it calls the close function to discard the socket. There
is no need to call the shutrdown function, as there is no virtual circuit established with other
processes.

The following sections examine the socket APIs’ syntax and use in more detail.

370

Chap. 11. Sockets

1111 socket

The function prototype of the socket APl is:

#include <sys/types.h>
#include <sys/socket.h>

int socket (int domain, int type, int protocol);

This function creates a socket of the given domain, type, and protocol.

The domain argument specifies the socket naming convention and the protocol address
format. Some popular socket domains are AF_UNIX (UNIX domain) and AF_INET
(Defense Advanced Research Project Agency Internet domain).

The rype argument specifies a socket type. The possible values and their meanings are:

Socket type Meaning

SOCK_STREAM Establishes a virtual circuit for communication.
Messages are sent in a sequenced, reliable, two-
way, connection-based byte stream

SOCK_DGRAM Establishes a datagram for communication. Mes-
sages are sent in a fast (usually connectionless) but
unreliable fashion. Datagram messages are not
guaranteed to be sent at all

SOCK_SEQPACKET Provides a sequenced, reliable, two-way, connec-
tion-based message transmission with a fixed max-
imum message length

The protocol argument specifies a particular protocol to be used with the socket. Actual
value is dependent on the domain argument. Usually, this is set to zero, and the kernel will
choose an appropriate protocol for the specified domain.

The return value of the function is an integer socket descriptor if it succeeds or -1 if it
fails. Note that a socket descriptor is the same as a file descriptor and uses up one file descrip-
tor table slot in the calling process.

371

Chap. 11. Sockets

11.1.2 bind

The function prototype of the bind APl is:

#include <sys/types.h>
#include <sys/socket.h>

int bind (int sid, struct sockaddr* addr_p, int len);

This function binds a name to a socket. The socket is referenced by sid, which is a
socket descriptor, as returned by a socket function call. The addr_p argument points to a
structure that contains the name to be assigned to the socket. The len argument specifies the
size of the name structure pointed to by the addr_p argument.

The actual structure of the object pointed to by the addr_p argument is different for dif-
ferent domains. Specifically, for a UNIX domain socket, the name to be bound is a UNIX
path name, and the structure of the object pointed to by the addr_p is:

struct sockaddr

{
short sun_family;
char sun_path[];

|3

where the sun_family field should be assigned the value of AF_UNIX and the sun_path
field should contain a UNIX path name. If the bind call succeeds, a file having a name speci-
fied in the sun_path field will be created in the file system. It should be deleted via the unlink
API, once the socket is no longer needed.

For an Internet domain socket, the name to be bound consists of a machine host name
and a port number. The structure of the object pointed to by the addr_p is:

struct sockaddr_in

{
short sin_family;
u_short sin_port;
struct in_addr sin_addr;

|5

372

Chap. 11. Sockets

where the sin_family field should be assigned the value of AF_INET. The sin_port field
is a port number, and the sin_addr field is a host machine name where the socket resides. The
struct sockaddr_in is defined in the <netinet/in.h> header.

This function returns a O if it succeeds or a -1 if it fails

11.1.3 listen

The function prototype of the listen AP is:

#include <sys/types.h>
#include <sys/socket.h>

int listen (int sid, int size);

This is called in a server process to establish a connection-based socket (of type
SOCK_STREAM or SOCK_SEQPACKET) for communication.

The sid argument is a socket descriptor, as returned by a socket function call. This is the
socket that the listen API acts upon.

The size argument specifies the maximum (backlog) number of connection requests
that may be queued for the socket. In most UNIX systems, the maximum allowed value for
the size argument is 5.

The return value of the function is 0 if it succeeds or -1 if it fails.

1114 connect

The function prototype of the connect AP is:

#include <sys/types.h>
#include <sys/socket.h>

int connect (int sid, struct sockaddr* addr_p, int len);

This is called in a client process in requesting a connection to a server socket.

373

Chap. 11. Sockets

The sid argument is a socket descriptor, as returned by a socket function call. In BSD
4.2 and 4.3, an unbound socket designated by sid is protocol-dependent as to whether it will
be given a name. In System V.4, the socket is bound to the name assigned to it by the under-
lying transport provider.

The addr_p argument is a pointer to the address of a sockaddr-type object that holds
the name of the server socket to be connected. The actual structure of the object is dependent
on the domain of the server socket. The possible format is either struct sockaddr (for UNIX
domain) or struct sockaddr_in (for Internet domain).

The len argument specifies the size, in number of bytes, of the object pointed to by the
addr_p argument.

If sid designates a stream socket, a virtual circuit connection is established between the
client and server sockets. The client’s stream sockets may be connected only once. However,
if sid designates a datagram socket, this establishes a default address for any subsequent send
function calls via that socket. Datagram sockets may be ‘“connected” multiple times to
change their association with different default addresses. Datagram sockets may dissolve
their association by connecting to a NULL address.

The function returns a 0 if it succeeds or a -1 if it fails.

11.1.5 accept

The function prototype of the accept APl is:

#include <sys/types.h>
#include <sys/socket.h>

int accept (int sid, struct sockaddr* addr_p, int* len_p);

This is called in a server process to establish a connection-based socket connection
with a client socket (which calls connect to request connection establishment).

The sid argument is a socket descriptor, as returned by a socket function call. The
addr_p argument is a pointer to the address of a sockaddr-typed object that holds the name of
a client socket where the server socket is connected.

The len_p argument is initially set to the maximum size of the object pointed to by the
addr_p argument. On return, it contains the size of the client socket name, as pointed to by
the addr_p argument.

374

Chap. 11. Sockets

Note that if either the addr_p or the len_p argument is NULL, the function does not
pass back the client’s socket name to the calling process.

The function returns -1 if it fails; otherwise it returns a new socket descriptor that the
server process can use to communicate with the client exclusively.

11.1.6 send

The function prototype of the send API is:

#include <sys/types.h>
#include <sys/socket.h>

int send (int sid, const char* buf, int len, int flag);

This function sends a message, contained in buf, of size len bytes, to a socket that is
connected to the socket, as designated by sid.

The flag argument is normally assigned a 0 value, but it can also be set to MSG_OOB,
which means that the message contained in buf should be sent as an out-of-band message.

There are two types of messages that can be transmitted by sockets: regular messages
and out-of-band messages. By default, every message sent by a socket is a regular message,
unless it is explicitly tagged as out of band. If there is more than one messages of a given type
sent from a socket, these are received by another socket in a FIFO order. The recipient socket
may select which type of message it wishes to receive. Out-of-band messages should be used
as emergency messages only.

If a process uses a connection-based socket or a connectionless socket that has a default
recipient address established (via a connect function call), it can use either the send or write
APIs 10 send regular messages via that socket. However, whereas send and sendto can be
used to send zero-length messages, write should not be used in such operations. Furthermore,
in BSD 4.2 and 4.3, a write function call fails if it is used on an unconnected socket. In Sys-
tem V.4, the same function call appears to succeed, but no data is actually sent.

The function returns -1 if it fails; otherwise it returns the number of data bytes sent.

375

Chap. 11. Sockets

11.1.7 sendto

The function prototype of the sendto API is:

#include <sys/types.h>
#include <sys/socket.h>

int sendto (int sid, const char* buf, int len, int flag,
struct sockaddr* addr_p, int* len_p);

This function is the same as the send API, except that the calling process also specifies
the address of the recipient socket name via the addr_p and len_p arguments.

The sid, buf, len, and flag arguments are the same as that of the send API. The addr_p is
a pointer to the object that contains the name of a recipient socket. The len_p contains the
number of bytes in the object pointed to by the addr_p.

The function returns -1 if it fails; otherwise, it returns the number of data bytes actually
sent.

11.1.8 recv

The function p1ototype of the recv API is:

#include <sys/types.h>
#include <sys/socket.h>

int recv (int sid, char* buf, int len, int flag);

This function receives a message via a socket designated by sid. The message received
is copied to buf, and the maximum size of buf is specified in the len argument.

If the MSG_OOB flag is specified in the flag argument, an out-of-band message is to be
received; otherwise, a regular message is wanted. Furthermore, the MSG_OOB flag may be
specified in flag, which means that the process wishes to “peek” at the incoming message but
does not want to remove it from the socket stream. It can call recv again later to receive the
message.

376

Chap. 11. Sockets

If a process uses a connection-based socket or a connectionless socket that has a default
recipient address established (via the bind API), it can use either the recv or the read APl to
receive regular messages via that socket. However, in BSD 4.2 and 4.3 read fails if it 1s used
on an unconnected socket. In System V.4, however, read returns a zero value on an uncon-
nected socket in blocking mode or returns a -1 value if the socket is nonblocking.

The function returns -1 if it fails: otherwise, it returns the number of data bytes received
in buf.

11.1.9 recvirom

The function prototype of the recvfrom API is:

#include <sys/types.h>
#include <sys/socket.h>

int recvfrom (int sid, char* buf, int len, int flag,
struct sockaddr* addr_p. int* len_p);

This function is the same as the recv API, except that the calling process also specifies
the addr_p and len_p arguments to receive the sender name.

The sid, buf, len, and flag arguments are the same as those of the recv AP1. The addr_p
is a pointer to the object that contains the name of the sender socket. The len_p contains the
number of bytes in the object pointed to by the addr_p.

The function returns -1 if it fails: otherwise, it returns the number of data bytes actually
received.

11.1.10 shutdown

The function prototype of the shutdown AP1 is:

#include <sys/types.h>
#include <sys/socket.h>

int shutdown (int sid, int mode);

3n7

Chap. 11, a Stream Socket Example

This function closes the connection between a server and client socket.

The sid argument is a socket descriptor, as returned from a socket function call. This is
the socket where the shutdown should occur.

The mode argument specifies the type of shutdown desired. Its possible values and
meanings are:

Mode Meaning

0 Closes the socket for reading. All further reading
will return zero bytes (EOF)

1 Closes the socket for writing. Further attempts to
send data to the socket will return a -1 failure code.

pa Closes the socket for reading and writing. Further

atterpts to send data to the socket will return a -1
failure code, and any attempt to read data from the
socket will receive a zero value (EOF)

The function returns -1 if it fails, O if it succeeds.

11.2 a Stream Socket Example

This section depicts a pair of client/server programs that demonstrates how to sct up
stream sockets for IPC. The stream sockets used in the example may be UNIX domain sock-
ets or Internet domain sockets. In the latter case, the client and server processes may run on
the same machine or on two different machines.

To facilitate the implementation of socket-based applications, a sock class is defined to
encapsulate the socket APIs from application programs. The advantages of this approach are:
(1) it hides the low-level socket addresses set up from application programs. Users of this
package manipulate socket addresses in terms of socket names or host names and port num-
bers only; and (2) the read and write member functions of the sock class are analogous to
their equivalent UNIX file APIs. All these features reduce overhead in learning to use sockets,
as well as the programming effort of users.

The sock class is defined in the sock.h header, as follows:

#ifndef SOCK_H
#define SOCK_H

#include <iostream.h>

378

Chap. 11.

a Stream Socket Example

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <memory.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <netdb.h>

#include <sys/systeminfo.h>

const int BACKLOG_NUM = 5;

class sock
{
private:
int sid; // socket descriptor
int domain; // socket domain
int socktype; // socket type
int rc; // member function return status code

/* Build a Internet socket name based on a hostname and a port no */
int constr_name(struct sockaddr_in& addr, const char* hostnm,

int port)
{

addr.sin_family = domain;
if (lhostnm)
addr.sin_addr.s_addr = INADDR_ANY;
else {
struct hostent *hp = gethostbyname(hostnm);
perror(“gethostbyname”);
return -1;

}
memcpy((char*)&addr.sin_addr,(char*)hp->h_addr,
hp->h_length);
}

addr.sin_port = htons(port);
return sizeof(addr);

b

/* Build a UNIX domain socket name based on a pathname */
int constr_name(struct sockaddr& addr, const char* Pathnm)

{

addr.sa_family = domain;
strcpy(addr.sa_data, Pathnm);

379

Chap. 11.

380

a Stream Socket Example

return sizeof(addr.sa_family) + strlen(Pathnm) + 1:

|3

/* Convert an IP address to a character string host name */
char* ip2name(const struct in_addr in)
{

u_long laddr,;

if ((int)(laddr = inet_addr(inet_ntoa(in))) == -1) return 0

struct hostent *hp = gethostbyaddr((char*)&laddr,

sizeof (laddr), AF_INET);
if ('hp) return O;
for (char **p = hp->h_addr_list; *p 1= 0; p++) {
if (hp->h_name) return hp->h_name;
}

return O;

b

public:

/* sock object constructor function */
sock(int dom, int type, int protocol=0) : domain(dom), socktype(type)
{
if ((sid=socket(dom, type,protocol))<0) perror(“socket”);
¥

I* sock object destructor function */

~sock() { shutdown(); close(sid); }; // discard a socket
int fd() { return sid; }; // return a socket's id
int good(, { return sid >=0; }; // check sock obj status

/* assign a UNIX or an Intemet name to a socket */
int bind(const char* name, int port=-1)

{
if (port==-1) { // UNIX domain socket
struct sockaddr addr,;
int len = constr_name(addr, name);
if ((rc= ::bind(sid,&addr,len))<0) perror(“bind™);
} \
else { // Internet domain socket

struct sockaddr_in addr;

int len = constr_name(addr, name, port);

if ((rc= ::bind(sid, (struct sockaddr *)&addr, len))<0 i
(rc=getsockname(sid, (struct sockaddr*)&addr, &len))<0)
perror(“bind or getsockname”);

Chap. 11. a Stream Socket Example

else cout << “Socket port: “ << ntohs(addr.sin_port) << endl;
}
/* setup connection backlog threshold for a STREAM socket */
if (rct=-1 && socktype!=SOCK_DGRAM &&
(re=listen(sid, BACKLOG_NUM)) < 0)
perror(“listen”);
return rc;

b

/* A server socket accepts a client connection request */
int accept (char *name, int* port_p)

{
if (Iname) return ::accept(sid, 0, 0);
if lport_p Il *port_p==-1) { // UNIX domain socket
struct sockaddr addr;
int size = sizeof(addr);
if ((rc = ::accept(sid, &addr, &size)) >-1)
strncpy(name,addr.sa_data,size), name[size}="0’;
}
else { // Internet domain socket
struct sockaddr_in addr,;
int size = sizeof (addr);
if ((rc = ::accept(sid, (struct sockaddr*)&addr, &size)) >-1) {
if (name) strcpy(name,ip2name(addr.sin_addr));
if (port_p) *port_p = ntohs(addr.sin_port);
}
}
return rc;
|3

/* A client socket initiates a connection request to a server socket */
int connect(const char’ hostnm, int port=-1)

if (port==-1) { // UNIX domain socket
struct sockaddr addr;
int len = constr_name(addr, hostnm);
if ((re= ::connect(sid,&addr,len))<0) perror(“bind"):

}

else { // Internet domain socket
struct sockaddr_in addr;
int len = constr_name(addr, hostnm, port);
if ((rc= ::connect(sid, (struct sockaddr *)&addr,len))<0)

perror(“bind”);
}

return rc;

|3

381

Chap. 11.

382

a Stream Socket Example
/* writes a message to a connected stream socket */
int write(const char* buf, int len, int flag=0, int nsid=-1)

{
b

return ::send(nsid==-1 ? sid : nsid, buf, len, flag);

/* reads a message from a connected stream socket */

int read(char* buf, int len, int flag=0, int nsid=-1) // read a msg
{

return ::recv(nsid==-1 ? sid : nsid, buf, len, flag);

I3 '
/* write to a socket of the given socket name */

int writeto(const char* buf, int len, int flag, const char* name,
const int port, int nsid=-1)
{

if (port==-1) { // UNIX domain socket
struct sockaddr addr;

int size = constr_name(addr, name);
return ::sendto(nsid==-1 ? sid : nsid, buf, len, flag, &addr, size);

}

else { // Internet domain socket
struct sockaddr_in addr;
char buf1[80];
if (\name) { . / use local host

if (sysinfo(SI_HOSTNAME,buf1,sizeof buf1)==-1L)
perror(“sysinfo”);

name = buft;

}

int size = constr_name(addr, name, port);

return ::sendto(nsid==-1 ? sid : nsid, buf, len, flag,

(struct sockaddr*)&addr, size);
}

|5

I* Receive a message from a socket */

int readfrom(char buf, int len, int flag, char* name, int *port_p,
int nsid =-1)

{

if (lport_p Il *port_p ==-1) { // UNIX domain socket
struct sockaddr addr;
int size = sizeof(addr);
if ((re=::recvfrom(nsid==-1 ? sid : nsid, buf, len, flag, &addr,
&size)) >-1 && name)
strncpy(name,addr.sa_data,rc), name[rc}="\0’;

Chap. 11. a Stream Socket Example

else { // Internet domain socket
struct sockaddr_in addr;
int size = sizeof (addr);
if ((r¢ = :recvfrom(nsid==-1 ? sid : nsid, buf, len, flag,
(struct sockaddr*)&addr, &size)) >-1) {
if (name) strcpy(name,ip2name(addr.sin_addr));
if (port_p) *port_p = ntohs(addr.sin_port);
}
}

return rc;

L

/* shut down connection of a socket */
int shutdown(int mode = 2)

{
return ::shutdown (sid,mode);
2
}, /* class sock */
#endif

The sock class is designed to hide the low-level socket API interface from application
programs. Thus, an application that wishes to open a UNIX domain socket need only specify
a UNIX path name to the bind or connect member functions. On the other hand. if an applica-
tion wishes to open an Internet domain socket, it need only to specify the host name and port
number. There is no need for an application to manipulate any struct sockaddr-typed objects.
This saves programming time and reduces errors in setting up socket addresses.

The sock member functions are almost one-to-one correspondents with the socket
APIs. This makes it easy for users who like to switch between using socket APIs and using
the sock class objects. Furthermore, the sock::read, sock::wirte, sock::readfrom, and
sock::writeto functions have a nsid argument that is assigned when a calling process is a
server. It can communicate with a client process via the nsid socket descriptor, as obtained
from an seck::accept function call.

A server program that makes use of the sock class to establish a stream socket connec-
tion with a client program is shown below:

/* sock_stream_srv.C */
#include “sock.h”

const char* MSG2 = “Hello MSG2";
const char* MSG4 = “Hello MSG4”;

int main(int argc, char* argvy))
char buf[80], socknm[80];

383

Chap. 11.

}

a Stream Socket Example
int port=-1, nsid, rc;

if (argc < 2) {
cerr << “usage: “ << argv[0] << “ <socknamelport> [<host>)\n";
return 1,

}

/* check if port no. of a socket name is specified */
(void)sscanf(argv{1],"%d",&port);

/* create a stream socket */
sock sp(port!=-1 ? AF_INET : AF_UNIX, SOCK_STREAM);
if (!sp.good()) return 1;

/* Bind a name to the server socket */
if (sp.bind(port==-1 ? argv[1] : argv[2],port) < O) return 2;

/* accept a connection request from a client socket */
if ((nsid = sp.accept(0, 0)) < 0) return 1;

/* read MSG1 from a client socket */
if ((rc=sp.read(buf, sizeof buf, 0, nsid)) < 0) return 5;
cerr << “server: receive msg: ' << buf << “\n”;

/* write MSG2 to a client socket */
if (sp.write(MSG2,strlen(MSG2)+1,0,nsid)<0) return 6;

/* read MSGS3 from a client socket */
if (sp.readfrom(buf, sizeof buf, 0, socknm, &port, nsid) > 0)
cerr << “server: recvfrom ” << socknm << “ msg: “ << buf << “\n”;

/* write MSG4 to a client socket */
if (write(nsid, MSG4,strlen(MSG4)+1)==-1) return 7;

The command line argument for this server program may be a UNIX path name for cre-
ating a UNIX domain socket. Conversely, it may be a port number and a host name (optional)
for creating an Internet domain socket. In the latter case, if a host name is not specified, the
host name of the local machine is used instead. Note that in the sock: :bind function call, if an
Internet domain socket is created, the function prints the assigned port number to the standard
error port. This is so that a client process can reference that port number when creating a
socket to communicate with the server’s socket.

After a socket is created and assigned a name, the server process waits for a client con-
nection to be established with its socket. After that, it receives the MSG1 message via the

384

Chap. 11.

a Stream Socket Example

sock: :read function from the client socket, prints the message, and sends the MSG2 message
via the sock::write function to the client process. The server reads the MSG3 message from
the client via the sock::readfrom function and replies to the client with the MSG4 message
via the write API. Finally, the server process terminates, and the socket it allocated is dis-
carded via the sock::~sock destructor function.

The client program that communicates with the above server is:

/* sock_stream_cls.C */

#include “sock.h”

const char* MSG1 = “Hello MSG1”;
const char* MSG3 = “Hello MSG3”;
int main(int argc, char* argv{])

{

int port=-1, rc;

if (argc <2) {
cerr << “usage: “ << argv|0] << “ <socknamelport> [<host>]\n";
return 1;

}

/* check if port number of socket name is specified */
(void)sscanf(argv[1],'%d" ,&port);

/* *host’ may be a socket name or a host name */
char buf[80], *host= (port==-1) ? argv[1] : argv{2], socknm[80];

/* create a client socket */
sock sp(port!=-1 2 AF_INET : AF_UNIX, SOCK_STREAM),
if (!sp.good()) return 1;

/* connect to a server socket */
if (sp.connect(host,port) < 0) return 8;

/* Send MGS1 to server */
if (sp.write(MSG1, strlen(MSG1)+1) < 0) return 9;

/* read MSG2 from server */
if (sp.read(buf,sizeof buf) < 0) return 10;
cerr << “client: recv " << buf << “\n”;

/* Send MGS3 to server */
if ((rc=sp.writeto(MSG3, strlen(MSG3)+1, 0, host, port, -1)) < 0)
return 11;

385

Chap. 11. a Stream Socket Example

I* read MSG4 from server */
if ((rc=read(sp.fd(),buf,sizeof buf))==-1) return 12;
cerr << “client: read msg: “ << buf << “\n”;

/* shut down socket explicitly */
sp.shutdown();

}

The command line arguments for this client program are the same as those of the server
program: a UNIX pathname or a port name followed by an optional host name. The program
creates a UNIX domain socket or an Internet domain socket based on the command line argu-
ments,

The client program calls the sock::connect function in connecting to the server socket.
It writes the MSG1 message to the server via the sock::write function, then reads the MSG2
message via the sock::read function. After that, the client writes the MSG3 message to the
server via the sock::writeto function and reads the reply MSG4 message via the read API.
When the client process terminates, it explicitly shuts down the socket via the sock::shut-
down() function call.

The above client/server can be run with UNIX domain sockets or Internet domain sock-
ets. The following screen log depicts a sample interaction between server and client processes
using UNIX domain sockets. The server socket name is arbitrarily set to SOCK:

% CC -0 sock_stream_srv sock_stream_srv.C -Isocket -insl
% CC -0 sock_stream_cls sock_stream_cls.C -Isocket -ins|
% sock_stream_srv SOCK &

[1]1373

% sock_stream_cls' SOCK

server: receive msg: ‘Hello MSG1’

client: recv ‘Hello MSG2’

server: recvfrom * msg: ‘Hello MSG3’

client: read msg: ‘Hello MSG4’

[1] + Done sock_stream_srv SOCK

Note that in the above, when the server receives MSG3 from the client via the-
sock: :readfrom function call, the socknm variable is assigned with a NULL string. This is
because the client socket has not been bound with a name in the client process. In a client/
server setup, it is generally allowed that only the server socket be named. so that client sock-
ets can be connected to it (and not vice versa).

Chap. 11. a Stream Socket Example

The following screen log depicts a sample interaction between server and client pro-
cesses using Internet domain sockets. Here, the machine name that hosts both processes is
fruit. It lets the system pick the available port number for the client and server sockets:

% sock_stream_srv O fruit &

[1]1374

Socket port: 32804

% sock_stream_cls 32804 fruit

server: receive msg: ‘Helio MSGY’

client: recv ‘Hello MSG2’

server: recvirom ‘fruit’ msg: ‘Hello MSG3’
client: read msg: ‘Hello MSG4’

[1] + Done sock_stream_srv O fruit

Note that the same client/server programs are run, but with different command line
arguments. The client/server processes are run with Internet domain sockets. The output of
the programs are the same as in the UNIX domain sockets example. Furthermore, although
the above example shows that the server and client processes are executed on the same
machine, the result would be the same if run on separate machines. The only difference in
running the two programs are: (1) execute the server program on one machine (for example,
fruit); (2) execute the client program on a remote machine and specify the server socket port
number and host name as command line arguments-the output message (i.e., receive MSG1
and MSG3) is displayed on its host machine, while the clients’ output messages (i.e., receive
MSG?2 and MSG4) are displayed on their host machine.

The datagram socket-based programs also use the sock.h header, as above. The first
program, sock_datagram_srv.C is:

#include “sock.h”
const char* MSG2 = “Hello MSG2”;
const char* MSG4 = “Hello MSG4”;

int main(int argc, char* argv{])
{

int port=-1, rc;

char buf{80], socknm{80];

if (arge <2) {
cerr << “usage: “ << argv[0]
<< “ <socknamelport> [<remote-host>[\n";
return 1;

}

Chap. 11.

}

a Stream Socket Example

/* Check if port number or socket name is specified */
(void)sscanf(argv[1],"%d" . &port);

I* Create a datagram socket */
sock sp(port==-1 ? AF_UNIX : AF_INET, SOCK_DGRAM);
if (!sp.good()) return 1;

/* assign a name to the socket */
if (sp.bind(port==-1 ? argv[1] : argv[2),port) < 0) return 2;

* read MSG1 from peet */
if ((re=sp.readfrom(buf, sizeof buf, 0, socknm, &port, -1)) < 0) return 1;
cerr << “server: recvfrom from * << socknm << “ msg: “ << buf << end!;

/* write MSG2 to peer */
if ((rc= sp.writeto(MSG2, strlen(MSG2)+1, 0, socknm, port, -1)) < 0)
return 2;

/* establish a default client address */
if ((rc = sp.connect(socknm, port)) < 0) return 3;

/* read MSG3 from peer*/
if ((rc = sp.read(buf, sizeof buf, 0)) < 0) return 4;
cerr << “server: receive msg: ” << buf << “\n”;

/* write MSG4 to peer */
if (write(sp.fd(), MSG4,strien(MSG4)+1)<0) return 5;

The above program is almost the same as the sock_stream_srv.C, except that the socket
created here is declared to be SOCK_DGRAM (via the sock::sock function). The program is
given its assigned socket name (for creating UNIX domain socket) or port number and/or
host name (for creating an Internet domain socket) at the command line. This socket name is
known by the peer that wishes to communicate with it. After the socket is created, the pro-
gram reads a message from its peer via the sock::readfrom function, returning the peer’s
socket name. The program responds to its peer with the MSG2 message via the sock::writeto
function. After that, the program establishes a default connection address with the peer socket
via the sock::connect call. It then uses the sock::read function to read the peer’s MSG3 mes-
sage and, finally, replies with the MSG4 message via the write API.

The peer program, sock_datagram_cls.C, which communicates with the above pro-

gram is:

#include “sock.h”
const char* MSG1 = “Hello MSG1”;

Chap. t1. a Stream Socket Example
const char* MSG3 = “Hello MSG3”;
int main(int argc, char* argv{})
{ ‘
char buf[80], socknm[80];
int nlen, port = -1, rc;
if (argc < 2) {
cerr << “usage: “ << argvi0]
<< “ <sockname | port> [<remote-host>]\n";
return 1;
)
* check if port number or socket name is specified */
(void)sscanf(argv[1),"%d",&port);
* create a datagram socket */
sock sp(port==-1 2 AF_UNIX : AF_INET, SOCK_DGRAM),
if (!sp.good()) return 1;
if (port==-1) { // UNIX domain socket
sprintf(buf,"%s%d", argv{1], getpid()); // construct client socket name
if (sp.bind(buf,port) < 0) return 2; // assign name to socket
}
else if (sp.bind(0,0) < 0) return 2; // assign name to socket
* write MSG1 to peer */
it ((rc=sp.writeto(MSG1, strlen(MSG1)+1, 0, port==-17? argv(1] :
argv(2],
port, -1)) < 0)
return 6;
/* read MSG2 from peer */

if ((rc=sp.readfrom(buf, sizeof buf, 0, socknm, &port, -1)) < 0) return 7;
cerr << “client: recvfrom ” << socknm << “ msg: “ << buf << endi;

I* establish a default peer socket address */
if (sp.connect(socknm,port) < 0) return 8,

* write MSG3 to peer */
if (sp.write(MSG3, strlen(MSG3)+1) < 0) return 9;

I* read MSG4 from peer */
if ((rc=read(sp.fd(),buf,sizeof buf))==-1) return 10,
cerr << “client: read msg: “ << buf << endl;

sp.shutdown!);

Chap. 11. a Stream Socket Example

The command line arguments for the above example are its peer’s socket name or port
number and/or host name. The program constructs its socket name (for UNIX domain socket)
by taking its peer socket name and appending it with its own process ID. It could also let the
system assign it a port number (for Internet domain socket) from the host machine. Once the
program establishes its own datagram socket (via the sock::sock and sock::bind function
calls), it sends an MSG! message to the peer socket via the sock::writeto function and waits
for the reply message MSG2 via the sock::readfrom function call. Continuing, the process
sets up a default peer socket address via the sock::connect function. It then uses the
sock::write function and the read API to send an MSG3 message to its peer process. These
functions also allow it to receive the MSG4 message from the peer. Before the program ter-
minates, it uses the sock::shutdown function to shut down the socket.

The sample output of these two programs on UNIX domain sockets is:

% CC -0 sock_datagram_srv sock_datagram_srv.C -l socket -Insi
% CC -o sock_datagram_cls sock_datagram_cls.C -Isocket -Insl
% sock_datagram_srv SOCK_DG &

% sock_datagram_cls SOCK_DG

server: recvfrom ffom ‘SOCK_DG572’ msg: Hello MSG1

client: recvfrom ‘SOCK_DG’ msg: Hello MSG2

server: receive msg: ‘Hello MSG3’

client: read msg: Hello MSG4

[1] + Done sock_datagram_srv SOCK_DG

Notice in the above output that the first peer socket name is SOCK_DG and the coun-
terpart socket name is SOCK_DG572. The output of these two programs is similar to that of
the stream socket client/server programs.

The sample outputs of these two program on Internet domain sockets are:

% sock_datagram_srv O fruit &

Socket port: 32838

% sock_datagram_cls 32838 fruit

Socket port: 32840

server: recvfrom from ‘fruit’ msg: Hello MSG1
client: recvfrom fruit’ msg: Hello MSG2

server: receive msg: ‘Hello MSG3’

client: read msg: Hello MSG4

[1] + Done sock_datagram_srv O fruit

Chap. t1. Client/Server Message-Handling Example

In the above example, the first peer socket port number is 32838. It runs on a machine
called fruit. The second process socket port number is 32840. It also runs on fruit (although it
can be run on a different machine). The two processes interact in exactly the same fashion as
when they were using UNIX domain sockets. The output is also identical, except for the
printout of socket names.

11.3 Client/Server Message-Handling Example

This section depicts a new version of the clienuserver example shown in Chapter 10,
Section 10.3.7. The new version uses stream sockets to set up a communication channel
between the message server and each of its client processes. Furthermore, because the server
is connected directly to each client process, each message sent from a client consists of a ser-
vice command (e.g., LOCAL_TIME, GMT_TIME or QWUIT_CMD, etc.) encoded in char-
acter string format. The server also sends the service response to its client in a character
string format.

The message server program, sock_msg_srv.C, is shown below:

#include “sock.h”

#include <sys/times.h>

#include <sys/types.h>

#define MSG1 “Invalid cmd to message server”

typedef enum { LOCAL_TIME, GMT_TIME, QUIT_CMD,
ILLEGAL_CMD } CMDS;

/* process a client’s commands */

int process_cmd (int fd)

{
char buf{80};
time_t tim;
char* cptr;

/* read commands from a client unul EOF or QUIT_CMD */
while (read(fd, buf, sizeof buf) >0) {
int cmd = ILLEGAL_CMD;
(void)sscanf(buf,"%d",&cmd);
switch (cmd) {
case LOCAL_TIME:
tim = time(0);
cptr = ctime(&tim),
write(fd, cptr, strlen(cptr)+1);
break;
case GMT_TIME:
tim = time(0);

391

Chap. 11. Client/Server Message-Handling Example

cptr = asctime(gmtime(&tim));
write(fd, cptr, strlen(cptr)+1);
break;

case QUIT_CMD:
return cmd;

defauit:
write(fd, MSGH1, sizeof MSG1);

}
}

return O;

}
int main(int argc, char* argv(])

char buf{80], socknm[80];
int port=-1, nsid, rc;
fd_set select_set;

struct timeval timeRec;

if (argc < 2) {
cerr << “usage: “ << argv[0] << “ <socknamelport> [<host>]\n";
return 1;

}

/* check if port no, of a socket name is specified */
(void)sscanf(argv[1],"%d",&port);

/* create a stream socket */
sock sp(port!=-1 ? AF_INET : AF_UNIX, SOCK_STREAM);
if ('sp.good()) return 1;

* Bind a name to the server socket */
if (sp.bind(port==-1 ? argv(1] : argv[2],port) < 0) return 2;

for (;;) { /1 Poll for client connections
timeRec.tv_sec = 1; // polling time-out after one second
timeRec.tv_usec= 0;
FD_ZERO(&select_set);
FD_SET(sp.fd(), &select_set);

/* wait for time-out or a read event occurs for socket */
rc = select(FD_SETSIZE, &select_set, 0, 0, &timeRec);
if (rc > 0 && FD_ISSET(sp.fd(), &select_set)) {
/* accept a connection request from a client socket */
if ((nsid = sp.accept(0, 0)) < 0) return 1;

Chap. 11. Client/Server Message-Handling Example

/* process commands */
if (process_cmd(nsid)==QUIT_CMD) break;

close(nsid); /* recycle file descriptor */
}
/* eise do something else */
}
sp.shutdown().
return O;

The invocation syntax of a message server program is the same as that of the
sock_stream_srv.C example. It allocates a stream socket and binds a name to it in the same
manner. However, once the socket is set up, the server uses the select API to poll read events
occurring on the socket. Each select polling time out after 1 second so that the server may be
programmed to do something else, if needed.

When a client sends a service command to the server, it calls the process_cmd function
to process all the service commands initiated by the client. The process_cmd function returns
when the client sends either QUIT_CMD or a noninteger service command to the server. In
either case, the server closes the nsid file descriptor that references the socket, as created by
the sock::accept function call. After that, the server either continues to poll the stream socket
for connection to another client or simply shuts down the stream socket and terminates itself.

The client program, sock_msg_cls.C, is:

#include “sock.h”
#define QUIT_CMD 2

int main(int argc, char* argv(])
if (argc < 2) {
cerr << “usage: “ << argv[0] << “ <sockname | port> [<host>]\n";
return 1;

int port=-1, rc;

/* check if port number of socket name is spceified */
(void)sscanf(argv{1],'%d" &port);

/* ‘host’ may be a socket name or a host name */
char buf[80], *host= (port==-1) ? argv[1] : argv{2], socknm([80];

Chap. 11, Clienv/Server Message-Handling Example

/* create a client socket */
sock sp(port!=-1 ? AF_INET : AF_UNIX, SOCK_STREAM);
if (!sp.good()) return 1;

/* connect to a server socket */
if (sp.connect(host,port) < 0) return 8;

/* Send cmds 0 -> 2 to server */

for (int cmd=0; cmd < 3; cmd++) {
/* compose a command to server */
sprintf(buf,"%d",cmd);
if (sp.write(buf,strien(buf)+1) < 0) return 9;

/* exit the loop if QUIT_CMD */
if cmd==QUIT_CMD) break;

/* read reply from server */
if (sp.read(buf,sizeof buf) < 0) return 10;
cerr << “client: recv " << buf << “\n":

)
sp.shutdown();
return O;

}

The client program’s invocation syntax is the same as that of the sock_stream_cls.C
example. It allocates a stream socket and-connects it to the server socket in the same manner.
However, once the socket is set up, the client sends the following service messages to the
server: (1) tell local datevtime; (2) tell GMT date/times; (3) quit command; and (4) solicit a
warning message from the server.

For each service command sent by a client (except the QUIT_CMD), the client collects
the server response and prints the results to the standard output. The client program termi-
nates after it has sent the QUIT_CMD to the server.

The client and server programs are compiled as follows:

% CC -0 sock_msg_srv sock_msg_srv.C -| socket -Ins|
% CC -0 sock_msg_cls sock_msg_cls.C -Isocket -Ins|

A sample console log of the server/client program interaction is:

% sock_msg_srv 0 fruit &
[1] 441

394

Chap. 11. T

Socket port: 32792

% sock_msg_cls 32792 fruit

client: recv ‘Sun Feb 12 00:41:25 1995’
client: recv ‘Sun Feb 12 08:41:25 1995’

[1] + Done sock_msg_srv O fruit

In the above, the client and server processes communicate using Internet domain
stream sockets. The client collects only the server responses found on the LOCAL_TIME and
UTC_TIME commands. Again, by using the Internet domain sockets, the above server and
client processes can be run on separate machines.

The following console log shows the same client/server processes interacting in the
same manner as the above, but using only UNIX domain sockets:

% sock_msg_srv SOCK_MSG &

[1] 446

% sock_msg_cls SOCK_MSG

client: recv ‘Sun Feb 12 00:42:38 1995’

client: recv ‘Sun Feb 12 08:42:38 1995’

[1] + Done sock_msg_srv SOCK_MSG

11.4 TLI

Transport Level Interface was developed in UNIX System V.3 as an alternative to sock-
ets. TLI is more flexible than sockets and is based on STREAM, which supports most trans-
port protocols. TLI creates transport end points whose behavior and function are similar to
those of sockets. For example, TLI transport end points may communicate with each other in
either a connection-based or a connectionless mode. Furthermore, processes running on dif-
ferent machines or on the same machine may communicate via their TLI transport end points.
Both sockets and TLI transport end points are designated by file descriptors. Thus, a process
may set the O_NONBLOCK flag on these file descriptors, either when they are assigned or
via the fentl function. This renders the execution of corresponding socket or TLI end point
operations as nonblocking.

A TLI end point cannot communicate with a socket. When a TLI transport end point is
created, a user must specify that a transport protocol be bound to that end point. In sockets,
however, a user is not required to specify a transport protocol in creating a socket. The socker
API will choose a default protocol based on the socket type. In addition to these differences,
the address assigned to a socket for intramachine communication is different from that of a
TLI end point. A TLI end point is assigned an integer port number for communicating with
other transport ~nd points on the same machine, whereas a socket is assigned a UNIX path

395

Chap. 11. TU

name for the same function. For communication over the Internet, a TLI transport end point
is assigned a machine name and a service port number (similar to that of socker). Finally, for
connection-based communication, client sockets are usually not assigned addresses unless
the client processes explicitly assign them. On the other hand, TLI transport end points are
always assigned addresses, either by users or by the underlying transport protocol.

There is an almost one-to-one correspondence between TLI APIs and those of sockets.
This makes it easy for socket-based applications to be converted to TLI. The next section
gives an overview of TLI APIs and their comparison to socket APIs. The subsequent sections
describe the syntax and use of TLI APIs in more detail. The final two sections depict two
examples of TLI application: One is a rewrite of the client/server examples shown in Section
11.2, using TLI transport end point instead of sockets. The other example shows how to use
TLI transport end points to send datagram messages.

11.4.1 TLI APIs

TLI system functions and their use are:

396

TLIAPI Function

t_open Creates a transport end point and specifies an
underlying transport protocol

t_bind Assigns a name to a transport end point. For a con-
nection-based end point, this also specifies the
maximum number of backlog connection requests
allowed

t_listen Waits for a connection request from a client trans-
port end point

t_accept Accepts a connection request from a remote trans-
port end point

t_connect Sends a connection request to a server transport
end point

t_snd For a connection-based transport end point only.
Sends a message to a connected end point

t_rcv For a connection-based transport end point only.
Receives a message from a connected end point

t_sndudata Sends a datagram message to a transport end point
with a given address

t_rcvudata Receives a datagram message and a sender address
from a transport end point

t_snddis Aborts a connection

t_rcevdis Returns an abort connection indication with a rea-

son

Chap. 11.

TLIAPI
t_sndrel

t._rcvrel
t_error

t_alloc

t_free

t_close

TL

Function

Sends a request to a transpart end point for orderly
release of a connection

Returns an orderly connection release indication
from a connected transport end point

Similar to perror, but prints TLI-specific error
diagnostics if a TLI function call fails

Allocates dynamic memory for a transport end
point

Deallocates dynamic memory of a transport end
point

Closes a transport end point descriptor

The calling sequences of the above TLI APIs in establishing a server and client virtual
circuit connection are shown in Figure 11.3.

t_snd

Server transport end point
t_open
t_bind

t_listen

t_accept

A

t_sndrel
t_rcvrel

t_close

Figure 11.3 TLI API calling sequence for server and client transport end points

Client transport end point

t_open

Y

t_bind

¥
t_connect
/L\

t_snd t_rcv

t_rcvrel

l

t_sndrel

y

t_close

Notice the similarity of the calling sequences in the above to those depicted in Figure

11-1. Specifically, the r_open AP1 is similar t
and the t_snd and ¢_rcv functions are similar to the send and rcv APls,
the r_listen APl is not the same as the listen API. This is bec
imum number of pending connection requests allowed foras

o the socket API, the t_bind is like the bind API,
respectively. However,
ause the listen API sets the max-
ocket. For a transport end point,

397

Chap. 11. TLI

this information is set in the ¢_bind API instead. The ¢_listen API is actually like the socket’s
accept AP, in that it causes the calling process to wait for a client connection request. Once a
connection request is received, the ¢_listen function returns with the client transport end point
address. The server may call either t_accept to accept the connection or the ¢_snddis function
to abort the connection.

Like the accept AP, the 1_accept APLmay generate a new descriptor that designates a
private transport end point for the server to communicate with a client process. The server
process can continue to monitor further connection requests from other client processes via
the original descriptor, as obtained from the 1_open call.

Once a server and client process finish their communication, either one of them can call
the 7_sndrel function to send a disconnect notification request to their counterpart. The other
process calls the ¢_rcvrel function to receive that notification and responds with a sndrel func-
tion call. Once the first process receives the reply notification via the ¢_rcvrel function, the
transport end points are disconnected, and both processes may call the ¢_close function to dis-
pose their transport end points.

As an alternative to the ¢_sndrel and 1_rcvrel functions, a server and client process may
call the 7_snddis and ¢_rcvdis functions to abort a transport connection. The ¢_snddis function
is abortive, and any data remaining to be sent over the transport end points are discarded
immediately. The _sndrel function, on the other hand, is nonabortive, and any remaining
data to be passed between the transport connection are delivered before the connection is
destroyed. All transport protocols used with TLI must support the ¢_snddis and ¢_rcvdis func-
tions, but they are not required to support the ¢_sndrel and t_rcvrel functions.

t_open

t_bind

t_sndudata t_rcvudata

"
v

t_close

Figure 11.4 TLI API calling sequence to create a datagram transport end point

398

Chap. 11 Tl

The TLI API calling sequence that creates a datagram transport end point is shown in
Figure 11.4.

The manipulation of datagram transport end points is quite simple: A process calls
1_open to create a transport end point, then calls the 7_bind function to assign a name to the
end point. After that, the process calls the r_sndudata function to send messages to other pro-
cesses, and each message is tagged with a recipient transport end point address. The process
also receives messages from other processes via the t_rcvudata function. Each message
received is tagged with a sender transport end point address. so that the process can reply
accordingly.

Once the process finishes its interprocess communication, it calls the _close to discard
the transport end point descriptor. There is no need to call the 7_snddis or t_sndrel function
here, as there is no virtual circuit established with other processes.

The following few sections examine TLI API syntax and use in more detail.

1142 t_open

The function prototype of the t_open APl is:

#include <tiuser.h>
#include <fcntl.h>

int t_open (char* path, int aflag, struct t_info* info);
4 p 24

This function creates a transport end point that uses a transport provider. as specified by
path. The actual value to path may be the path name of a device file that designates the trans-
port provider. For example, the /dev/ticlis file designates a UDP transport provider, and the /
dev/ticotsord file designates a virtual circuit transport provider.

The ajlag argument specifies the access mode of the transport end point by the calling
process. Its value is defined in the <fcntl.h> header and is usually O_RDWR, which means
that the calling précess may send and receive messages via the transport end point. In addi-
tion, the O_NONBLOCK flag may also be specified with the O_RDWR flag, which renders
the transport end point to perform nonblocking operations.

The info argument returns default characteristics of the underlying transport provider.
This information is usually ignored and the actual value for info may be 0. However, if a user
is interested in examining these default characteristics, the user can define a struct t_info
typed variable and pass the address of that variable as actual value to the info argument.

399

Chap. 11. TL

When the function returns, he can lcok at the content of that variable. One interesting piece of
data is contained in the info->servtype field. The possible values and meanings are:

servtype value Meaning

T_COTS The transport provider supports virtual circuit con-
nection but not the orderly disconnection request

T_COTSORD The transport provider supports virtual circuit con-
nection and the orderly disconnection request

T_CLTS The transport provider supports the passing of dat-

agram messages

The above constants are declared in the <tiuser.h> header. The return value of the func-
tion is -1 if it fails. If it succeeds, the value is a descriptor that designates a transport end point
created by the function.

The following statements create a connection-based transport end point that supports
orderly release of connection. Furthermore, the transport end point operations are performed
in ‘nonblocking mode, and the transport default characteristic information is not wanted. The
transport end point descriptor 1s assigned to the variable fd:

intfd = t_open(“/dev/ticotsord”, O_RDWRIO_NONBLOCK,0);
if (fd == -1) t_error(“t_open™);

The following statements create a datagram transport end point. The transport end
point operations are to be performed in the normal blocking mode, and the transport default
characteristics are returned via the info variable. The transport end point descriptor is -
assigned to the variable fd:

struct t_info info;
int fd = t_open(“/devfticlts”, O_RDWR, &info);
if (fc==-1) t_error(“t_open”);
Some transport end points have system-defined addresses, as specified in the /etc/ser-
vices file. For example, the following two lines in a /etc/services file define two end points:

/etc/services
test 4045/tcp
utst1 5001/udp

In the above, the first transport end point service name is test and it uses TCP as its
transport provider. Thus, it is a connection-based end point. The second end point service
name is utst! and it uses UDP as its transport provider. This makes it a datagram end point.

400

Chap. 11. TU

Given the above definitions in the /etc/services file, one can determine the address of a
transport end point address and its transport provider device file name as follows:

struct nd_hostserv hostserv;

struct netconfig “nconf;

struct nd_addrlist *addr;

void *hp;

int type = NC_TPI_COTS_ORD;
if ((hp=setnetpath()) == 0) '

{

perror(“Can’t init network”);

exit(1);
}
hostserv.h_host = “fruit”; // assume the machine host name
hostserv.h_serv = “test”; // transport’s service name
while ((nconf=getnetpath(hp)) != 0)
{
if (nconf->nc_semantics == type
&& netdir_getbyname(nconf, &hostserv, &addr)==0)
break;
}
endnetpath(hp);
if (nconf==0)

cerr << “No transport found for service: ‘test\n”;

else if ((tid=t_open(nconf->nc_device, O_RDWR, 0)) < 0)
t_error(“t_open fails”);

else cerr << “transport end point’s address is specified in addi\n”;

In the above code segment, the machine name and the transport service name are
assumed to be fruit and fest, respectively. This information is stored in the hostserv variable.
The setnetpath, gemetpath, and endnetpath functions are used to retrieve each entry in the /
etc/netconfig file, where each entry contains a transport provider type and a corresponding
device file name. In the above example, a transport provider of type NC_TPI_COTS_ORD
(connection-based and support for orderly connection release) is sought. For each transport
provider whose type matches the criteria, the nconf and hostserv variables are passed to the
netdir_getbyname function. This finds the address of: (1) a transport end point on the speci-
fied machine (fruit in this example); and (2) the given service name (fesf). This function uses
the specified transport provider.

401

Chap. 11. Tu

The transport end point address is returned via the addr variable. This addr variable is
used later on in the ¢_bind (server process) or t_connect (client process) function calls.

The above code can be modified as follows to get a datagram transport end point
address. It is also the device file path name of the transport provider for utst/ service:

* Assign the value NC_TPI_CLTS to the fype variable instead of
NC_TPI_COTS_ORD

* Assign the value utst] to the hostserv.h_serv data field

1143 t_bind

The function prototype of the ¢_bind API is:

#include <tiuser.h>
int t_bind (int fd, struct t_bind* inaddr, struct t_bind* outaddr);

This function binds an address (or a name) to a transport end point, as designated by the
fd argument. The actual value of fd is obtained from a z_open call.

The inaddr argument contains the address assigned to the transport end point. Its actual
value may be NULL, which means that the transport end point underlying the transport pro-
vider is to assign the necessary address.

The struct t_bind is declared as;

struct t_bind

{
struct netbuf addr;
unsigned glen;

|5

where the glen field specifies the maximum number of connection requests that may be
pending for the transport end point. This is set to a nonzero value for a server transport end
point and a zero value for all other uses. The addr field contains the address to be assigned to
the transport end point. ’

402

Chap. 11. Tu

The struct netbuf is declared as:

struct netbut
{

unsigned int maxien;
unsigned int len;
char* buf;

13

where the len value specifies the number of characters in buf that contains the transport
end point address. The maxlen field is a dont-care for inaddr.

The outaddr argument returns the actual address assigned to the transport end point by
the underlying transport provider. This may be different from that specified in inaddr. If the
transport provider fails to bind the address specified in inaddr to the end point, it will bind a
different address to it instead. The actual value to outaddr may be NULL, which means that
the calling process does not care what address is assigned to the transport end point. This is
usually the case for a connection-based client transport end point.

If the actual value for outaddr is the address of a struct t_bind type variable, then, as
input, the outaddr->buf is an address of a buffer defined by a calling process, and the out-
addr->maxlen field specifies the maximum size of the outaddr->buf buffer. On return, the
outaddr->len field contains the number of characters in the outaddr->buf, which stores the
transport end point address, as assigned by the transport provider. '

The function returns a -1 if it fails, a 0 if it succeeds.

The following sample code binds an address returned by the netdir_getbyname func-
tion (see the example in the last section) to a transport end point designated by fd. Further-
more, the end point may accept up to five client connection requests at any one time. Notice
that ¢_alloc is used to allocate dynamic storage for the struct _bind-typed object (as pointed
to by bind). This guarantees that all the fields in the object are initialized properly.

struct t_bind *bind = t_alloc (fd, T_BIND, T_ALL);

if (Ibind)

t_error(“t_alloc fails for T_BIND");
else {

bind->qlen = 5;

bind->addr = *(addr->n_addrs);
if (t_bind(fd, bind, bind) < 0) t_error(“t_bind");

Chap. 11. T

A transport end point may be bound to an integer-type address, which is useful if the
end point communicates with other transport end points on the same machine only. The fol-
lowing code binds an address of 2 to a transport end point designated by fd:

struct t_bind *bind = t_alloc (fd, T_BIND, T_ALL);
if (bind) {

bind->glen = 5;

bind->addr.len = sizeof(int);

(int)bind->addr.buf = 2;

if (t_bind(fd, bind, bind) < 0) t_error(“t_bind");
} else t_error(“t_alloc fails for T_BIND");

1144 t_listen

The function prototype of the t_listen APl is:

#include <tiuser.h>

int t_listen (int fd, struct t_call* call);

This function waits for a client connection request to arrive at a transport end point as
designated by fd. The client’s transport end point address is returned via the call argument.

By default this function blocks the calling process until a client connection request is
received. However, if fd is specified to be nonblocking (using the O_NONBLOCK flag in the
1_open call or set via the fentl function), the ¢_listen function returns immediately if no client
connection request is detected by the function. The ¢_ermo global variable will be set to
TNODATA.

The struct t_call is declared as;

struct t_cali
{
struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequencs;

